Cusabio
News > Biological News >

Link between me...

Link between metabolic disorders and Alzheimer´s disease examined

View:96 Time:2012-Jun-15 11:46

A new supplement to the Journal of Alzheimers Disease provides a state-of-the-art assessment of research into the link between metabolic syndrome and cognitive disorders. The supplement is guest edited by Vincenza Frisardi, of the Department of Neurological and Psychiatric Sciences, University of Bari, and the Geriatric Unit and Gerontology-Geriatrics Research Laboratory, IRCCS, Foggia, Italy, and Bruno P. Imbimbo, Research and Development Department, Chiesi Farmaceutici, Parma, Italy.

 

The prevalence of MetS and obesity has increased over the past several decades. MetS is a cluster of vascular and metabolic risk factors including obesity, hypertension, an abnormal cholesterol profile, and impaired blood glucose regulation. "Although molecular mechanisms underlying the relationship between MetS and neurological disorders are not fully understood, it is becoming increasingly clear that cellular and biochemical alterations observed in MetS may represent a pathological bridge between MetS and various neurological disorders," explains Dr. Frisardi.

 

Type 2 diabetes (T2D) has been linked with cognitive impairment in a number of studies. The risk for developing both T2D and AD increases proportionately with age, and evidence shows that individuals with T2D have a nearly twofold higher risk of AD than nondiabetic individuals.

 

Paula I. Moreira, Faculty of Medicine and Center for Neuroscience and Cell Biology, University of Coimbra, Portugal, outlines some of the likely mechanisms. Both AD and T2D present similar abnormalities in the mitochondria, which play a pivotal role in cellular processes that impair their ability to regulate oxidation in the cell. Human amylin, a peptide that forms deposits in the pancreatic cells of T2D patients, shares several properties with amyloid-ß plaques in the Alzheimers brain. Insulin resistance is another feature shared by both disorders. Impairment of insulin signalling is directly involved in the development of tau tangles and amyloid ß (Aß) plaques. "Understanding the key mechanisms underlying this deleterious interaction may provide opportunities for the design of effective therapeutic strategies," Dr. Moreira notes.

 

Pre: How aging normal cells fuels tumor growth and metastasis

Next: Fragile X gene´s prevalence suggests broader health risk