The Integrin $\alpha_v\beta_{3-5}$ Ligand MFG-E8 Is a p63/p73 Target Gene in Triple-Negative Breast Cancers but Exhibits Suppressive Functions in ER$^+$ and erbB2$^+$ Breast Cancers

Chuanwei Yang, Tetsu Hayashida, Nicole Forster, et al.

Updated Version
Access the most recent version of this article at:
doi:10.1158/0008-5472.CAN-10-1471

Supplementary Material
Access the most recent supplemental material at:
http://cancerres.aacrjournals.org/content/suppl/2011/04/04/0008-5472.CAN-10-1471.DC1.html

Cited Articles
This article cites 25 articles, 12 of which you can access for free at:
http://cancerres.aacrjournals.org/content/71/3/937.full.html#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.
The Integrin α₃β₃-5 Ligand MFG-E8 Is a p63/p73 Target Gene in Triple-Negative Breast Cancers but Exhibits Suppressive Functions in ER⁺ and erbB2⁺ Breast Cancers

Chuanwei Yang¹, Tetsu Hayashida¹, Nicole Forster¹, Cuiqi Li¹, Dejun Shen², Shyamala Maheswaran¹, Li Chen¹, Karen S. Anderson³, Leif W. Ellisen¹, Dennis Sgroi⁴, and Emmett V. Schmidt¹,⁵

Abstract

The progression from preinvasive lesion to invasive carcinoma is a critical step contributing to breast cancer lethality. We identified downregulation of milk fat globule-EGF factor 8 (MFG-E8) as a contributor to breast cancer progression using microarray analysis of laser capture microdissected (LCM) tissues. We first identified MFG-E8 downregulation in invasive lesions in transgenic mammary tumor models, which were confirmed in LCM-isolated human invasive ductal carcinomas compared with patient-matched normal tissues. In situ analyses of MFG-E8 expression in estrogen receptor (ER) positive cases confirmed its downregulation during breast cancer progression and small inhibitory MFG-E8 RNAs accelerated ER⁺ breast cancer cell proliferation. MFG-E8 also decreased in erbB2⁺ human cancers and erbB2 transgenic mice lacking MFG-E8 showed accelerated tumor formation. In contrast, MFG-E8 expression was present at high levels in triple-negative (ER⁻, PgR⁻, erbB2⁻) breast cancers, cell lines, and patient sera. Knockdown, chromatin immunoprecipitation, and reporter assays all showed that p63 regulates MFG-E8 expression, and MFG-E8 knockdowns sensitized triple-negative breast cancers to cisplatin treatment. Taken together, our results show that MFG-E8 is expressed in triple-negative breast cancers as a target gene of the p63 pathway, but may serve a suppressive function in ER⁺ and erbB2⁺ breast cancers. Its potential use as a serum biomarker that contributes to the pathogenesis of triple-negative breast cancers urges continued evaluation of its differential functions. Cancer Res; 71(3); 937–45. ©2010 AACR.

Introduction

Tumor progression results from accumulation of genetic changes that permit autonomous growth of malignant cells (1). While evaluating the genetics of tumor progression, we identified downregulation of milk fat globule—EGF factor 8 (MFG-E8) mRNA in a microarray analysis of invasive murine tumors (2), but we were puzzled by its original description as a breast cancer antigen (3). A monoclonal antibody raised against human mammary epithelial cells was originally used to demonstrate elevated circulating levels of a 46-kD protein (BA46) in patients with metastatic breast tumors (4). BA46 radioimmune assays accurately monitored tumor burden and the α-Ba46 antibody slowed tumor growth in xenotransplantation studies (5, 6). However, cDNA cloning of BA46 revealed that it was the normal breast protein milk fat globule factor 8 (MFG-E8)/lactadherin (7, 8). Importantly, MFG-E8 is the ligand for α₃β₃-integrins (8), which mediates apoptotic cell phagocytosis (9). Likewise, homozygous MFG-E8 loss impairs two mammary developmental stages; its loss blocks both branching morphogenesis (10) and clearance of apoptotic cells during involution (11). Finally, loss of integrins β3, β5, or β3β5 accelerates MMTV—erbB2 tumor formation (12).

In contrast, microarray studies have shown that MFG-E8 mRNA increases in a diagnostic gene cluster in basal breast cancers (13, 14). p63 gene expression is generally restricted to the basal myoepithelial cell layer of mammary glands and p63/p73 regulation plays a role in the biology of tumors arising from these cells (15). Recent developments in our understanding of BRCA1’s functions have suggested new therapeutic strategies incorporating platinum chemotherapy and poly (ADP-ribose) polymerase (PARP) inhibitors for triple-negative tumors, which encompass the basal subtype distinguished by its unique gene signature (16). The use of cisplatin as a targeted therapy is based on findings that BRCA1 defective cells are particularly susceptible to its effects (17). Studies of the p53/p63/p73 protein network provided additional support for this approach. Importantly, both p63 and p73 control of the p53 apoptosis program is a necessary and sufficient...
contributor to the effects of cisplatin. Additionally, a recent publication identified consensus p53/p63/p73 binding sites in the MFGE8 promoter, which control transcriptional responses to p63/p73 in skin (18). Here, we show that MFG-E8 is a potential biomarker for triple-negative breast cancers due to its upregulation by p63/p73, which contrasts with its down-regulation in ER$^{+}$ and erbB2$^{+}$ breast cancers.

Materials and Methods

Animals

MFG-E8 null mice obtained from Barry Shur (Emory University; ref. 19) were crossed with nonmutant MMTV-erbB2 mice (Jackson Labs). Tumor incidence was evaluated by routine histology or by counting masses in mammary gland whole mounts at 15 months of age. Conditional p63 knockdowns using p63box mice are described in Supplementary Materials. Animal experiments followed approved standards of the MGH Animal Advisory Committee.

Patient cohorts, laser capture microdissection, RNA isolation and amplification, microarray analysis, and qRT-PCR analysis

The patient cohort used for laser capture microdissection (LCM) specimens was previously described ($N = 36$; ref. 20). Additional erbB2$^{+}$ patients were added (total $N = 10$). Tumor samples were used to compare MFG-E8 and p63 mRNA levels in the basal versus other tumors that were described in Richardson et al. (13). Unpaired 2-tailed Student’s t tests were used to determine statistical significance of all data unless otherwise noted.

In situ hybridization

In situ hybridization procedures are described in the Supplementary Methods. MFG-E8 expression was scored by an investigator (D.S.) who was blinded to the estrogen receptor (ER) status of the tumors and who had not performed the in situ staining. In situ staining was scored as 0 (no staining), + (weak positive), ++ (moderate positive), and +++ (strong positive).
Patient sera and MFG-E8 ELISA

MFG-E8 was measured in stage I–III sera obtained prior to treatment from 10 healthy donors, 10 ER and/or PR+ patients, 10 erbB2+ patients, and 10 triple-negative patients. Sera were obtained from the Dana-Farber Cancer Institute (DFCI) with support from the NCI Breast SPORE program. Written consent was obtained from all subjects under institutional review board approval. MFG-E8 protein was
measured using a commercial ELISA (Cusabio Biotech Co.; CSB-E12637h).

Cell culture, RNAi and cisplatin sensitivity
T47D, MCF7, ZR-75-1, BT474, SKBR3, HCC 1937, MDA-MB468, MB231, HCC1143, BT20, and HS578T cells were grown in conditions indicated by the supplier (ATCC). Secreted MFG-E8 was measured in culture supernatants 24 hours after changing media by using the commercial ELISA.

A published lentiviral small inhibitory RNA for p63 (shp63; ref. 15) was transduced, and total RNA and protein were harvested 3 days later for MFG-E8 regulatory studies (15).

To study antiproliferative effects of MFG-E8, MFG-E8 (Ambion; ID numbers 1436, 1531, and 1621) and scramble (Dharmacon D-1205-20) siRNAs were transfected using Oligofectamine (Invitrogen). Ten wells of 96-well plates were seeded at 6,000 cells per well for each treatment condition for MTT assays performed 72 hours after transfection. Two hours after siRNA transfection, RGD blocking peptide (7) or its control peptide from ENZO Life Science was added to the cell culture medium to a final concentration of 2 mg/mL. For cisplatin sensitivity the same siRNAs were transfected, cells were harvested 48 hours after transfection in varying doses of cisplatin (Sigma-Aldrich), and MTT assays were performed as previously described (15).

Western blots
Antibodies used for standard Western blots included anti-MFG-E8 MAB2767 (R&D Systems), anti-p63 (H-129; Santa Cruz Biotechnology Inc.), and anti-actin MAB1501R (Chemicon).

Chromatin immunoprecipitation and luciferase reporter assays
We performed p63 chromatin immunoprecipitation (ChIP) experiments as detailed in Supplementary Materials. MFG-E8 reporter plasmids were provided by Dr. I. Katoh (Ikawa Laboratory, RIKEN, Wako, Japan; ref. 18) and luciferase reporter assays are detailed in Supplementary Materials.

Results

MFG-E8 expression decreases during tumor progression in ER+ and erbB2+ breast cancers but is increased in triple-negative breast cancers
Comparing mRNA expression changes between invasive tumors and preinvasive mammary tissues, we initially identified MFG-E8 as a uniformly downregulated gene during tumor progression in murine transgenic erbB2+/-, ras-, and cyclin D1-induced tumors (Supplementary Fig. 51A; ref. 2). An analysis of available SAGE expression data suggested that similar changes also occur in human cancers (Supplementary Fig. S1B). We therefore evaluated MFG-E8 expression changes in LCM-isolated human specimens where the patient's own normal and neoplastic tissues could be directly compared (20; ref. Fig. 1). We found that MFG-E8 mRNA decreased 3.3-fold from normal to ductal carcinoma in situ (DCIS) and from normal to invasive ductal carcinoma (IDC) in a mixed breast cancer population (Fig. 1A). This result contrasted with the original description of MFG-E8 as the breast cancer antigen BA46 so we next considered whether MFG-E8 changes might differ among different breast cancer subtypes.

We first found that MFG-E8 decreased 3.9-fold in ER+ DCIS and 4.8-fold in ER+ IDC samples (Fig. 1B). This was especially true for cyclin D1+ tumors (Fig. 1C). A similar decrease in MFG-E8 expression was found in LCM-isolated erbB2+ tumors during tumor progression from normal to DCIS to IDC (Fig. 1D). Published microarray data suggested that basal and BRCA-mutated breast cancers likely had increased MFG-E8 mRNA levels (Supplementary Fig. S2), which might explain the original description of MFG-E8 as the breast cancer antigen BA46 so we next considered whether MFG-E8 changes might differ among different breast cancer subtypes.

We first found that MFG-E8 decreased 3.9-fold in ER+ DCIS and 4.8-fold in ER+ IDC samples (Fig. 1B). This was especially true for cyclin D1+ tumors (Fig. 1C). A similar decrease in MFG-E8 expression was found in LCM-isolated erbB2+ tumors during tumor progression from normal to DCIS to IDC (Fig. 1D). Published microarray data suggested that basal and BRCA-mutated breast cancers likely had increased MFG-E8 mRNA levels (Supplementary Fig. S2), which might explain the original description of MFG-E8 as the breast cancer antigen BA46 so we next considered whether MFG-E8 changes might differ among different breast cancer subtypes.

We first found that MFG-E8 decreased 3.9-fold in ER+ DCIS and 4.8-fold in ER+ IDC samples (Fig. 1B). This was especially true for cyclin D1+ tumors (Fig. 1C). A similar decrease in MFG-E8 expression was found in LCM-isolated erbB2+ tumors during tumor progression from normal to DCIS to IDC (Fig. 1D). Published microarray data suggested that basal and BRCA-mutated breast cancers likely had increased MFG-E8 mRNA levels (Supplementary Fig. S2), which might explain the original description of MFG-E8 as the breast cancer antigen BA46 so we next considered whether MFG-E8 changes might differ among different breast cancer subtypes.

We first found that MFG-E8 decreased 3.9-fold in ER+ DCIS and 4.8-fold in ER+ IDC samples (Fig. 1B). This was especially true for cyclin D1+ tumors (Fig. 1C). A similar decrease in MFG-E8 expression was found in LCM-isolated erbB2+ tumors during tumor progression from normal to DCIS to IDC (Fig. 1D). Published microarray data suggested that basal and BRCA-mutated breast cancers likely had increased MFG-E8 mRNA levels (Supplementary Fig. S2), which might explain the original description of MFG-E8 as the breast cancer antigen BA46 so we next considered whether MFG-E8 changes might differ among different breast cancer subtypes.
levels in them compared with ER\(^+\) and erbB2\(^+\) tumors (Fig. 1E). In addition, we compared MFG-E8 protein in sera from 10 controls, 10 ER\(^+\), 10 erbB2\(^+\), and 10 triple-negative breast cancer patients (Fig. 1F). Control sera contained 318 ± 96 pg/mL of MFG-E8. MFG-E8 levels increased slightly to 1,700 and 1,730 pg/c in ER\(^+\)/PR\(^+\) and erbB2\(^+\) patient sera, respectively. In contrast, a mean of 3,900 pg/mL of MFG-E8 was found in sera from triple-negative breast cancer patients. This increase was due in large part to 4 of the 10 patients whose MFG-E8 ranged from 3,000 to 50,700 pg/mL, markedly exceeding levels seen in the other tumor types.

\textbf{In situ} hybridization confirms that MFG-E8 downregulation is highly correlated with ER\(^+\) breast cancer

To delineate cell types expressing MFG-E8 and to validate the results in ER\(^+\) breast cancers, we used \textit{in situ} analyses using specimens from a separate cohort of breast cancer patients (Fig. 2, ref. 21). We found high-level expression of MFG-E8 in an ER-negative breast cancer (Fig. 2A) where a sense control probe showed no hybridization (Fig. 2B). Moreover normal-appearing breast tissues showed robust MFG-E8 expression, which was decreased in adjacent tumor tissue in
an ER+ breast cancer (Fig. 2C). We confirmed that MFG-E8 is expressed in both juxta-lumenal and myoepithelial cells in normal ductal tissues (Fig. 2D), as previously described (10). We then performed our in situ analyses using 13 randomly selected ER+ and 12 ER- breast cancers to evaluate the significance of our observations. Characteristic ER+ versus ER- tumors are demonstrated in Figure 2E-L. One ER- tumor was among the top 13 MFG-E8-expressing tumors, and one ER+ tumor was among the bottom 12 expressing samples, showing that low MFG-E8 expression is highly correlated with the ER status of breast cancers (Fig. 2M, P < 0.001 by chi-square analysis).

p63 regulation of MFG-E8 expression

Abnormalities in p63/p73 regulation are an important feature of triple-negative (basal) breast cancers (15). Recently, MFG-E8 was found to be a p63/p73 target gene in skin cells (18). To determine whether p63/p73 regulatory changes in triple-negative breast cancer cells might account for their increased MFG-E8 levels, we compared p63 levels in LCM-triple-negative breast cancer cells might account for their expression. To determine whether p63/p73 regulatory changes in triple-negative breast cancer cells might account for their expression. (18). To determine whether p63/p73 regulatory changes in triple-negative breast cancer cells might account for their expression. (18) (Fig. 2A). The reporter constructs were cotransfected with expression constructs containing p63 isoforms in combination with pCMV-Renilla luciferase. The ratio of firefly luciferase values in the presence and absence of the p63 expression constructs (normalized to the internal Renilla standard) were calculated for each condition. Shown are the means and standard errors for three replicates at each point. A, the results for the four different p63 isoforms in T47D cells. B, the results for the four different p63 isoforms in MDA-MB468 cells.

MFG-E8 RNAi stimulates ER+ breast cancer cell proliferation, and MFG-E8 loss accelerates tumor formation in erbB2 transgenic mice

Since MFG-E8 is the ligand for integrins αvβ3 and αvβ5 that promotes apoptosis (22–24), we evaluated effects of MFG-E8 RNAi on cell proliferation in ER+ breast cancer cells (Fig. 6A and B). We also compared the effect of the RGD peptide that blocks integrin–ligand interactions (7) on siMFG-E8 induced cell proliferation. MFG-E8 knockdown increased cell numbers for ER+ breast cancer cell lines and the RGD peptide blocked this stimulation.

These data identified potentially antiproliferative effects of MFG-E8-integrin β3/β5 signaling in ER+ breast cancer cell lines. Such antiproliferative effects have been shown in vivo for the integrin β3/β5 receptor by acceleration of tumor formation in transgenic MMTV-erbB2 mice lacking integrins β3 and/or β5 (12). To assess MFG-E8 in vivo, we crossed MFG-E8 knockout mice to erbB2 transgenic mice. Several tumors...
developed in erbB2+/MFG-E8 null mice before 1 year of age, but none developed in either the erbB2/MFG-E8+/− or mice that were solely MFG-E8 null (Fig. 6C and D). However, erbB2-induced tumor onset was relatively slow in these crosses compared to the usual kinetics of tumor formation in inbred erbB2 mice. Consequently, we sacrificed remaining mice at 15 months of age and evaluated tumor formation using whole mounts to assess tumor incidence at 15 months of age (Fig. 6E). Tumor incidence caused by the MMTV-erbB2 transgenic mice that express the nonmutated form of erbB2 in their mammary tissues, Resulting MFG-E8−/− mice were then backcrossed to the MFG-E8−/− mice and mice of 4 genotypes were identified using PCR-based genotyping: nontransgenic-MFG-E8−/−, erbB2 transgenic-MFG-E8−/−, nontransgenic-MFG-E8+/−, and erbB2 transgenic-MFG-E8−/−. Mice were evaluated weekly for palpable masses and scored as positive upon appearance of a tumor. Shown are photomicrographs of standard hematoxylin and eosin stained tumors that arose in compound erbB2/MFG-E8−/− transgenic mice before 15 months of age (40×). The tumors are high-grade invasive ductal carcinomas that display a predominant solid pattern with focal gland formation. E, at 15 months of age, all remaining mice were sacrificed and mammary gland whole mounts were prepared. Tumors identified either in the whole mounts or in the mice that developed overt palpable tumors were scored as positive. We plotted the incidence of tumor formation for each genotype of mice and indicate the tumor number/number of mice evaluated within the bars of the graph. (P = 0.006 by Fisher’s exact test.)

Tumor incidence caused by the MMTV-nonmutant-erbB2 transgene on its own was lower than published experiments using inbred strains. However, mice that were erbB2+ and MFG-E8 null developed tumors at 3 to 7 times the rate seen in mice that were singly erbB2+ or MFG-E8 null alone.

Triple-negative cell lines have higher levels of MFG-E8 expression and knockdown of MFG-E8 increases chemosensitivity to cisplatin

We also evaluated MFG-E8 protein levels in 10 breast cancer cell lines (Fig. 7A top). High levels of MFG-E8 expression were only seen in triple-negative breast cancers. We measured secreted MFG-E8 levels in culture supernatants, finding that secreted MFG-E8 matches intracellular expression (Fig. 7A bottom). We evaluated the functional significance of these changes by knocking MFG-E8 down in two triple-negative breast cancer cells. The MFG-E8 siRNA effectively knocked its protein levels down (Fig. 7B), which led to increased sensitivity of both triple-negative breast cancer cell lines to the inhibitory effects of cisplatin (Fig. 7C and D).

Discussion

BA46/MFG-E8 was first identified using an antibody (BA46) that could monitor metastatic breast cancer burden in patient samples. Subsequently, MFG-E8/lactadherin physiologic role was shown in mammary development, complicating the earlier findings. Here, we clarify potentially opposing roles MFG-E8 may play in breast cancers of different types. We first show that MFG-E8 is downregulated in ER+ and erbB2+ breast cancer (Figs. 1and 2) where MFG-E8 is antiproliferative (Fig. 6). In contrast, we found that MFG-E8 is expressed at high levels in the basal/triple-negative set of breast cancers.

Figure 6. MFG-E8 is antiproliferative in estrogen receptor positive breast cancer cells, and its loss accelerates tumor formation in erbB2 transgenic mice. A, T47D cells were transfected with an siRNA oligonucleotide for MFG-E8 (MFG) or a scrambled control siRNA (Scr), and MFG-E8 and actin levels were analyzed 48 hours later using standard immunoblots to validate the siRNA. B, three breast cancer cell lines were transfected with scramble and MFG-E8 siRNAs. They were grown for 72 hours in the absence and presence of the RGB peptide that competitively inhibits ligand binding to α and β integrins and harvested for the MTT assay. The fold difference in proliferation was obtained by dividing the MTT measurement in the MFG-E8 siRNA samples by the MTT measurement in the scrambled oligonucleotide samples. Plotted are the means and standard deviations for each cell line. C and D, we crossed MFG-E8 null mice with homozygous MMTV-erbB2 transgenic mice that express the nonmutated form of erbB2 in their mammary tissues. Resulting MFG-E8−/− mice were then backcrossed to the MFG-E8−/− mice and mice of 4 genotypes were identified using PCR-based genotyping: nontransgenic-MFG-E8−/−, erbB2 transgenic-MFG-E8−/−, nontransgenic-MFG-E8+/−, and erbB2 transgenic-MFG-E8−/−. Mice were evaluated weekly for palpable masses and scored as positive upon appearance of a tumor. Shown are photomicrographs of standard hematoxylin and eosin stained tumors that arose in compound erbB2/MFG-E8−/− transgenic mice before 15 months of age (40×). The tumors are high-grade invasive ductal carcinomas that display a predominant solid pattern with focal gland formation. E, at 15 months of age, all remaining mice were sacrificed and mammary gland whole mounts were prepared. Tumors identified either in the whole mounts or in the mice that developed overt palpable tumors were scored as positive. We plotted the incidence of tumor formation for each genotype of mice and indicate the tumor number/number of mice evaluated within the bars of the graph. (P = 0.006 by Fisher’s exact test.)
where it apparently functions as a functional target gene of the p63/p73 pathway. We present evidence that p63 directly regulates MFG-E8 in those cells (Figs. 3–5). These descriptions of MFG-E8 suggest that its interactions with its αvβ3,5 receptor offer new insights for the diagnosis and treatment of different breast cancer types.

We started by investigating gene regulation during breast cancer progression. We were surprised to find MFG-E8 decreases in mouse models and in human breast cancers, given its initial description. This was especially surprising since we separately found that estradiol induces MFG-E8 and inhibitors of erbB2 downregulate its expression (not shown). Evidently these effects are secondary to regulation by p63 given its control of MFG-E8 as shown in Figures 3–5. Decreases in MFG-E8 that accompany decreased p63 in ER⁺ or erbB2⁺ tumors may provide a selective advantage in these cancer types to evade immune clearance during tumor progression since MFG-E8 acts as the ligand for the phagocytic clearance pathway (9).

In contrast, MFG-E8 expression was increased in a different set of tumors—the triple-negative subset. These tumors are the most refractory to treatment, and recent studies are investigating novel treatment strategies for them. By evaluating microarray databases, a triple-negative–specific association with MFG-E8 expression in breast cancer was readily apparent. We confirmed this increased expression using cell lines and in a patient cohort, thus showing that the initial descriptions of BA46 potentially focused on patients with this type of tumor. We confirmed reports that p63/p73 regulates MFG-E8, and we showed this is functionally significant since an MFG-E8 siRNA increased cisplatin sensitivity. These results suggest that antagonists of MFG-E8-integrin signaling should be investigated in triple-negative breast cancers and further suggest that circulating MFG-E8 levels might be used to monitor the clinical response of some patients where p63 dysregulation is a major feature of their triple-negative breast cancer. MFG-E8 levels vastly exceeded those seen in any other tumor patient in three patients (3,000, 5,000, and 50,000 pg/mL). While these patients represent only 30% of the triple-negative patients tested, markers such as alpha fetoprotein and carcinoembryonic antigen are useful when found in similar proportions of patients with other cancers. One erbB2
tumor patient had a serum level of 3,670 pg/mL. This level could be due to misclassification, to a mixed tumor phenotype, to co-occurrence of another disease with elevated MFG-E8 levels such as systemic lupus erythematosus (25) or to secretion by inflammatory cells in the tumor itself. Importantly, healthy donors exhibited no MFG-E8 levels higher than 366 pg/mL, again suggesting that further explorations of MFG-E8 levels as a serum tumor marker are warranted.

Taken together, our results show that MFG-E8 joins a large group of ligands with context-specific functions in cancer. For example, these dual roles are not unlike the dual functions of transforming growth factor-β. Our results provide additional evidence that triple-negative breast cancers are phenotypically distinct from other breast cancers and these interactions suggest that integrins might be a druggable target whose ligands need to be evaluated in context as integrin-related therapies are advanced in the clinic.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

References

Acknowledgments

We thank Andrea Richardson for help in obtaining the basal breast cancer mRNA samples from the Harvard Breast Cancer SPORE issue bank. We also thank Dr. I. Katoh (Ikawa Laboratory, RIKEN, Wako, Japan) for the kind gift of the MFG-E8 promoter luciferase plasmids.

Grant Support

This work, C. Yang, L. Chen, and E. V. Schmidt were supported by a grant from the National Cancer Institute of the National Institutes of Health ROI CA91909 and by the Harvard Breast Cancer SPORE grant P50 CA89393. C. Yang received additional support from ROI CA12821, and E. V. Schmidt received support from U01 AI07033. D. Sgroi and C. Li were supported by the Harvard Breast Cancer SPORE grant P50 CA91909 and NIH ROI CA121021. NIH/National Cancer Institute grant CA91138 supported S. Mahershara and T. Hayashida. K. S. Anderson was supported by NCI 1 U1 CA117374. The Tracey Davis Memorial Fund supported Nicole Forster and Leil Ellenis received support from the Avon foundation.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 2, 2010; revised November 22, 2010; accepted November 23, 2010; published OnlineFirst December 2, 2010.

Grant Support

This work, C. Yang, L. Chen, and E. V. Schmidt were supported by a grant from the National Cancer Institute of the National Institutes of Health ROI CA91909 and by the Harvard Breast Cancer SPORE grant P50 CA89393. C. Yang received additional support from ROI CA12821, and E. V. Schmidt received support from U01 AI07033. D. Sgroi and C. Li were supported by the Harvard Breast Cancer SPORE grant P50 CA91909 and NIH ROI CA121021. NIH/National Cancer Institute grant CA91138 supported S. Mahershara and T. Hayashida. K. S. Anderson was supported by NCI 1 U1 CA117374. The Tracey Davis Memorial Fund supported Nicole Forster and Leil Ellenis received support from the Avon foundation.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 2, 2010; revised November 22, 2010; accepted November 23, 2010; published OnlineFirst December 2, 2010.

Acknowledgments

We thank Andrea Richardson for help in obtaining the basal breast cancer mRNA samples from the Harvard Breast Cancer SPORE issue bank. We also thank Dr. I. Katoh (Ikawa Laboratory, RIKEN, Wako, Japan) for the kind gift of the MFG-E8 promoter luciferase plasmids.

Grant Support

This work, C. Yang, L. Chen, and E. V. Schmidt were supported by a grant from the National Cancer Institute of the National Institutes of Health ROI CA91909 and by the Harvard Breast Cancer SPORE grant P50 CA89393. C. Yang received additional support from ROI CA12821, and E. V. Schmidt received support from U01 AI07033. D. Sgroi and C. Li were supported by the Harvard Breast Cancer SPORE grant P50 CA91909 and NIH ROI CA121021. NIH/National Cancer Institute grant CA91138 supported S. Mahershara and T. Hayashida. K. S. Anderson was supported by NCI 1 U1 CA117374. The Tracey Davis Memorial Fund supported Nicole Forster and Leil Ellenis received support from the Avon foundation.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 2, 2010; revised November 22, 2010; accepted November 23, 2010; published OnlineFirst December 2, 2010.