ABCC6 Antibody

Code CSB-PA001065LA01HU
Size US$299 How to order?
Image
  • Immunofluorescence staining of A549 cells with CSB-PA001065LA01HU at 1:133, counter-stained with DAPI. The cells were fixed in 4% formaldehyde, permeabilized using 0.2% Triton X-100 and blocked in 10% normal Goat Serum. The cells were then incubated with the antibody overnight at 4°C. The secondary antibody was Alexa Fluor 488-congugated AffiniPure Goat Anti-Rabbit IgG(H+L).

The Latest Promotion Free Antibody trial simple
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Full Product Name Rabbit anti-Homo sapiens (Human) ABCC6 Polyclonal antibody
Uniprot No. O95255
Target Names ABCC6
Alternative Names ABC34 antibody; Abcc6 antibody; Anthracycline resistance-associated protein antibody; ARA antibody; ATP binding cassette sub family C (CFTR/MRP) member 6 antibody; ATP binding cassette sub family C member 6 antibody; ATP-binding cassette sub-family C member 6 antibody; EST349056 antibody; GACI2 antibody; MLP1 antibody; MOAT E antibody; MOAT-E antibody; MOATE antibody; MRP 6 antibody; MRP6 antibody; MRP6_HUMAN antibody; Multi-specific organic anion transporter E antibody; Multidrug resistance associated protein 6 antibody; Multidrug resistance-associated protein 6 antibody; Multidrug resistance-associated protein 6, URG7 protein antibody; multispecific organic anion transporter E antibody; PXE antibody; PXE1 antibody; URG7 antibody; URG7 protein antibody
Raised in Rabbit
Species Reactivity Human
Immunogen Recombinant Human Multidrug resistance-associated protein 6 protein (730-931AA)
Immunogen Species Homo sapiens (Human)
Conjugate Non-conjugated

The ABCC6 Antibody (Product code: CSB-PA001065LA01HU) is Non-conjugated. For ABCC6 Antibody with conjugates, please check the following table.

Available Conjugates
Conjugate Product Code Product Name Application
HRP CSB-PA001065LB01HU ABCC6 Antibody, HRP conjugated ELISA
FITC CSB-PA001065LC01HU ABCC6 Antibody, FITC conjugated
Biotin CSB-PA001065LD01HU ABCC6 Antibody, Biotin conjugated ELISA
Clonality Polyclonal
Isotype IgG
Purification Method >95%, Protein G purified
Concentration It differs from different batches. Please contact us to confirm it.
Buffer Preservative: 0.03% Proclin 300
Constituents: 50% Glycerol, 0.01M PBS, pH 7.4
Form Liquid
Tested Applications ELISA, IF
Recommended Dilution
Application Recommended Dilution
IF 1:50-1:200
Protocols ELISA Protocol
Immunofluorescence (IF) Protocol
Troubleshooting and FAQs Antibody FAQs
Storage Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
Lead Time Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds, and xenobiotics from cells. Mediates ATP-dependent transport of glutathione conjugates such as leukotriene-c4 (LTC4) and N-ethylmaleimide S-glutathione (NEM-GS) (in vitro), and an anionic cyclopentapeptide endothelin antagonist, BQ-123. Does not appear to actively transport drugs outside the cell. Confers low levels of cellular resistance to etoposide, teniposide, anthracyclines and cisplatin.; Mediates the release of nucleoside triphosphates, predominantly ATP, into the circulation, where it is rapidly converted into AMP and the mineralization inhibitor inorganic pyrophosphate (PPi) by the ecto-enzyme ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), therefore playing a role in PPi homeostasis.; Inhibits TNF-alpha-mediated apoptosis through blocking one or more caspases.
Gene References into Functions
  1. Serum levels of MRP8/MRP14 and MRP6 were up-regulated in patients with Graves' disease (GD) and Hashimoto's thyroiditis (HT). In addition, mRNA expression of MRP proteins in PBMCs and the thyroid gland was markedly elevated in these patients. PMID: 29656212
  2. High URG7 reduces the ER stress by decreasing the amount of unfolded proteins, by increasing both the total protein ubiquitination and the AKT activation and reducing Caspase 3 activation. PMID: 29704455
  3. Two compound heterozygous ABCC6 loss-of-function mutations, c.4182_4182delG (p.Lys1394Asnfs*9) and c.2900G > A (p.Trp967*), were found PMID: 29709427
  4. Genetic analysis revealed three nonsense, four frame-shift, one exon deletion and 13 missense mutations in 73 Japanese pseudoxanthoma elasticum patients. PMID: 28186352
  5. in a French cohort with pseudoxanthoma elasticum, study identified 538 mutational events with 142 distinct variants, of which 66 were novel PMID: 28102862
  6. ABCC6 overexpression may also contribute to nilotinib and dasatinib resistance in vitro. With nilotinib and dasatinib now front line therapy options in the treatment of CML, concomitant administration of ABCC6 inhibitors may present an attractive option to enhance TKI efficacy PMID: 29385210
  7. Using an integrated pathway-based approach, we identified polymorphisms in ABCC6, ABCB1 and CYP2C8 associated with overall survival. These associations were replicated in a large independent cohort, highlighting the importance of pharmacokinetic genes as prognostic markers in Ewing sarcoma PMID: 27287205
  8. ABCC6 knockdown HepG2 cells show: 1) intracellular reductive stress; 2) cell cycle arrest in G1 phase; 3) upregulation of p21Cip p53 independent; and 4) downregulation of lamin A/C. the absence of ABCC6 profoundly changes the HepG2 phenotype, suggesting that Pseudoxanthoma elasticum syndrome is a complex metabolic disease that is not exclusively related to the absence of pyrophosphate in the bloodstream. PMID: 28536638
  9. ABCC6 deficiency can be rescued by 4-phenylbutyrate therapy in a mouse model expressing human variants PMID: 27826008
  10. Biochemical and cell biological analyses demonstrate these mutations influence multiple steps in the biosynthetic pathway, minimally altering local domain structure but adversely impacting ABCC6 assembly and trafficking. The differential impacts on local and global protein structure are consistent with hierarchical folding and assembly of ABCC6. PMID: 27994049
  11. The results suggest that a transmembrane domain is not required for transport function and that a cytosolic loop maintains ABCC6 in a targeting-competent state for the basolateral membrane and might be involved in regulating the nucleotide binding domains. PMID: 26942607
  12. The results of this study showed that mtDNA(atp6) variants were actively involved in schizophrenia in some families with maternal inheritance of this PMID: 26822593
  13. Pseudoxanthoma elasticum is due to mutation of the ABCC6 gene on chromosome 16. PMID: 26564082
  14. Membrane insertion and topology of the amino-terminal domain TMD0 of multidrug-resistance associated protein 6 PMID: 26545497
  15. A direct relationship between reduced ABCC6 levels and the expression of pro-mineralization genes in hepatocytes. PMID: 25169437
  16. Minimal rescue of the morpholino-induced phenotype was achieved with eight of the nine mutant human ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE population harbors unique ABCC6 mutations. PMID: 25615550
  17. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to pseudoxanthoma elasticum PMID: 25062064
  18. The increase in ABCC6 expression accompanied by the induction of cholesterol biosynthesis supposes a functional role for ABCC6 in human lipoprotein and cholesterol homeostasis. PMID: 25064003
  19. ABCC6 gene is important to determine the genotype of patients diagnosed with pseudoxanthoma elasticum. PMID: 23675997
  20. Hepatic ABCC6-mediated ATP release is the main source of circulating PPi, revealing an unanticipated role of the liver in systemic PPi homeostasis. PMID: 24969777
  21. This study describes the URG7 expression in E.coli and a structural study of it by using circular dichroism and fluorescence spectroscopy. PMID: 24555429
  22. This study showed that the expression of ABCC6 in liver is an important determinant of calcification in cardiac tissues in response to injuries PMID: 24479134
  23. Case Report:ABCC6 mutations in pseudoxanthoma elasticum families from different ethnic backgrounds. PMID: 23572048
  24. analysis of pseudoxanthoma elasticum-causing missense mutants of ABCC6, and the correction of their mislocalization by chemical chaperone 4-phenylbutyrate PMID: 24352041
  25. Our findings provide additional evidence that the ABCC6 gene product inhibits calcification under physiologic conditions and confirm a second locus for generalized arterial calcification of infancy. PMID: 24008425
  26. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. PMID: 24277820
  27. nonsense mutations in the ABCC6 gene have a role in pseudoxanthoma elasticum and may be suppressed by PTC124 PMID: 23702584
  28. The virus-mediated anti-apoptotic effect of URG7 could arise from the C-terminal cytosolic tail binding a pro-apoptotic signaling factor and retaining it to the endoplasmic reticulum membrane. PMID: 23912081
  29. ABCC6 is in the basolateral membrane, mediating the sinusoidal efflux of a metabolite from the hepatocytes to systemic circulation. PMID: 23625951
  30. Mutations in the underlying disease genes ENPP1, ABCC6, NT5E, and SLC20A2, respectively, lead to arterial media calcification. PMID: 23122642
  31. The expression pattern of ABCC6P2 in 39 human tissues was highly similar to that of ABCC6 and ABCC6P1 suggesting similar regulatory mechanisms for ABCC6 and its pseudogenes. PMID: 22873774
  32. We identified three DNase I hypersensitive sites (HSs) specific to cell lines expressing ABCC6. PMID: 22763786
  33. ABCC6 mutations accounted for a significant subset of generalized arterial calcification of infancy patients, and ENPP1 mutations could also be associated with pseudoxanthoma elasticum lesions in school-aged children. PMID: 22209248
  34. ABCC6 does not transport adenosine. PMID: 21813308
  35. The heterozygosity for ABCC6 R1141X did not associate with risk of ischemic heart disease, myocardial infarction, ischemic cerebrovascular disease, or ischemic stroke. PMID: 21831958
  36. These results show that VK3GS is not the essential metabolite transported by ABCC6 from the liver and preventing the symptoms of pseudoxanthoma elasticum. PMID: 22056557
  37. The nucleotide-binding domain 2 of the human transporter protein MRP6. PMID: 21748403
  38. Angioid streaks in pseudoxanthoma elasticum are associated with the p.R1268Q mutation in the ABCC6 gene. PMID: 21179111
  39. regulatory pathway of ABCC6 expression showing that the ERK1/2-HNF4alpha axis has an important role in regulation of the gene PMID: 20463007
  40. The R1141X loss-of-function mutation of the ABCC6 gene is a strong genetic risk factor for coronary artery disease. PMID: 19929409
  41. Nine novel deletion mutations in ABCC6 cause pseudoxanthoma elasticum. PMID: 20075945
  42. The classic forms of pseudoxanthoma elasticum are due to loss-of-function mutations in the ABCC6 gene, which encodes ABCC6, a transmembrane efflux transporter expressed primarily in the liver PMID: 20032990
  43. Studies show that individuals homozygous for the c.3775delT mutation in the ABCC6 gene can have a highly variable phenotype. PMID: 19904211
  44. Loss of ATP-dependent transport activity in pseudoxanthoma elasticum-associated mutants of human ABCC6 (MRP6). PMID: 11880368
  45. Presence of the R1141X mutation in the ABCC6 gene is associated with a sharply increased risk of premature coronary artery disease PMID: 12176944
  46. We suggest that the severity of the Pseudoxanthoma elasticum phenotype is not directly correlated with the level of ABCC6/MRP6 activity. PMID: 12673275
  47. A specific founder effect for the R1141X mutation exists in Dutch patients with PXE (pseudoxanthoma elasticum). PMID: 12714611
  48. Using linkage analysis and mutation detection techniques, mutations in the ABCC6 gene were recently implicated in the etiology of pseudoxanthoma elasticum. PMID: 12850230
  49. Asn15, which is located in the extracellular N-terminal region of human ABCC6, is the only N-glycosylation site in this protein. PMID: 12901863
  50. Twenty-three different mutations were identified, among which 11 were new, in Italian patients with pseudoxanthoma elasticum PMID: 15459974

Show More

Hide All

Involvement in disease Pseudoxanthoma elasticum (PXE); Arterial calcification of infancy, generalized, 2 (GACI2)
Subcellular Location [Isoform 1]: Basolateral cell membrane; Multi-pass membrane protein.; [Isoform 2]: Endoplasmic reticulum membrane; Single-pass membrane protein.
Protein Families ABC transporter superfamily, ABCC family, Conjugate transporter (TC 3.A.1.208) subfamily
Tissue Specificity Expressed in kidney and liver. Very low expression in other tissues.
Database Links

HGNC: 57

OMIM: 264800

KEGG: hsa:368

STRING: 9606.ENSP00000205557

UniGene: Hs.442182

Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
Address
7505 Fannin St. Ste 610-312, Houston, TX 77054, USA
Join Us with

Subscribe newsletter

Leave a message

© 2007-2022 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1