Delta-theraphotoxin-Hm1a Antibody

Code CSB-PA351577ZA01HGU
Size Enquire
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Uniprot No.
Alternative Names
antibody; Delta-theraphotoxin-Hm1a antibody; Delta-TRTX-Hm1a antibody; Heteroscodratoxin-1 antibody; HmTx1 antibody; Kappa-theraphotoxin-Hm1a antibody; Kappa-TRTX-Hm1a antibody
Raised in
Rabbit
Species Reactivity
Heteroscodra maculata
Immunogen
Recombinant Heteroscodra maculata Delta-theraphotoxin-Hm1a (1-35AA)
Immunogen Species
Heteroscodra maculata (Togo starburst tarantula)(Togo starburst baboon spider)
Conjugate
Non-conjugated
Clonality
Polyclonal
Isotype
IgG
Purification Method
Antigen Affinity Purified
Concentration
It differs from different batches. Please contact us to confirm it.
Buffer
Preservative: 0.03% Proclin 300
Constituents: 50% Glycerol, 0.01M PBS, pH 7.4
Form
Liquid
Tested Applications
ELISA, WB (ensure identification of antigen)
Protocols
Troubleshooting and FAQs
Storage
Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
Value-added Deliverables
① 200ug * antigen (positive control);
② 1ml * Pre-immune serum (negative control);
Quality Guarantee
① Antibody purity can be guaranteed above 90% by SDS-PAGE detection;
② ELISA titer can be guaranteed 1: 64,000;
③ WB validation with antigen can be guaranteed positive;
Lead Time
Made-to-order

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
Gating-modifier toxin that potently inhibits inactivation of the mammalian Nav1.1/SCN1A sodium channel (EC(50)=38 nM). Also moderately inhibits inactivation of Nav1.2/SCN2A (EC(50)=236 nM) and Nav1.3/SCN3A (EC(50)=220 nM) when the channels are expressed in oocytes without the beta-1 auxiliary subunit. Does not inhibit inactivation of Nav1.2/SCN2A when the channel is coexpressed with the beta-1 auxiliary subunit. When tested on Nav1.1/SCN1A channel, it enhances peak current amplitude and potently delays channel inactivation in a dose-dependent manner, leading to a large sustained current. It has no effect on the voltage-dependence of steady-state activation, and induces a depolarizing shift in the voltage dependence of inactivation. In addition, it does not modify the recovery from fast inactivation in Nav1.1/SCN1A. The binding affinity and subtype selectivity of the toxin towards Nav1.1/SCN1A channel is determined by residues within both the S1-S2 and S3-S4 loops of the domain IV voltage sensor of the channel. This toxin also weakly inhibits several subtypes of voltage-gated potassium channels. It moderately blocks Kv2.1/KCNB1 (23% inhibition at 100 nM), Kv2.2/KCNB2 (19.7% at 100 nM and 51% at 300 nM), Kv4.1/KCND1 (IC(50)=280 nM), Kv4.2/KCND2 (39% at 300 nM) and Kv4.3/KCND3 (43% at 300 nM). In vivo, intracerebroventricular injection into mice elicits convulsions, spasms, tremors and rapid death. When injected into mouse hindpaw, the toxin elicits an immediate and robust response to pain. However, intraplantar injection of toxin does not cause neurogenic inflammation or alter sensitivity to heat, indicative of a modality-specific effect on mechanosensitive neurons. In Dravet syndrome mice model, intracerebroventricular infusion of this peptide rescues mice from seizures and premature death.
Subcellular Location
Secreted.
Protein Families
Huwentoxin-1 family, HaTx subfamily
Tissue Specificity
Expressed by the venom gland.
icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1