Recombinant Human ATP synthase-coupling factor 6, mitochondrial(ATP5J)

Code CSB-EP002369HU
Size US$2466
Image
  • (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Have Questions? Leave a Message or Start an on-line Chat

Product Details

Purity Greater than 90% as determined by SDS-PAGE.
Target Names ATP5J
Uniprot No. P18859
Research Area Tags & Cell Markers
Alternative Names ATP synthase; H+ transporting; mitochondrial F0 complex; subunit F6; ATP synthase-coupling factor 6; mitochondrial; ATP synthase-coupling factor 6; mitochondrial; ATP5; ATP5A; ATP5J; ATP5J_HUMAN; ATPase subunit F6; ATPM; CF6; F6
Species Homo sapiens (Human)
Source E.coli
Expression Region 1-108aa
Target Protein Sequence NKELDPIQKLFVDKIREYKSKRQTSGGPVDASSEYQQELERELFKLKQMFGNADMNTFPTFKFEDPKFEVIEKPQA
Note: The complete sequence including tag sequence, target protein sequence and linker sequence could be provided upon request.
Mol. Weight 36.0kDa
Protein Length Full Length
Tag Info N-terminal GST-tagged
Form Liquid or Lyophilized powder
Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
Buffer If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol.
Note: If you have any special requirement for the glycerol content, please remark when you place the order.
If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting
and FAQs
Protein FAQs
Storage Condition Store at -20°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Notes Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet & COA Please contact us to get it.

Target Data

Function Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. Part of the complex F(0) domain and the peripheric stalk, which acts as a stator to hold the catalytic alpha(3)beta(3) subcomplex and subunit a/ATP6 static relative to the rotary elements. Also involved in the restoration of oligomycin-sensitive ATPase activity to depleted F1-F0 complexes.
Gene References into Functions
  1. AKT2 and XIST expression was identified as a potential biomarker participating in the effect of ATP5J in colorectal cancer PMID: 29484395
  2. CF6-induced increase in apoptotic cells was blocked by immature or mature IF1, being accompanied by protein kinase B (PKB) phosphorylation. IF1 antagonizes the pro-apoptotic action of CF6 by relief of intracellular acidification and resultant phosphorylation of PKB. PMID: 26659871
  3. Over-expression of the ATP5J gene correlates with cell migration and 5-fluorouracil sensitivity in colorectal cancer. PMID: 24124598
  4. CF6 plays a crucial role in the development of insulin resistance and hypertension PMID: 22038518
  5. The phenotypic range of retinal, peripheral and central nervous system disease expression is characterized in a single family with NARP syndrome from the ATPase 6 m.8993T>C mtDNA point mutation. PMID: 20953793
  6. coupling factor 6 induces the development of systolic dysfunction and upregulation of nicotinamide adenine dinucleotide phosphate oxidase in the heart under the high-salt diet PMID: 20811295
  7. CF6 is a novel risk factor for ischemic heart disease in end-stage renal disease. Synergism of this peptide and asymmetric dimethylarginine might contribute to its occurrence presumably by inhibition of prostacyclin and nitric oxide production. PMID: 14633154
  8. Mutation analysis revealed the T9176C mutation in the mtATPase 6 gene (OMIM 516060) and the mutation load was above 90% in the patients with Leigh syndrome. PMID: 15709156
  9. Plasma CF6 elevated in patients with acute myocardial infarction. At 3 days, plasma CF6 correlated positively with plasma creatinine kinase peak value and correlated negatively with left ventricular ejection fraction. PMID: 15785006
  10. T8993G allele causes severe extrapyramidal dysfunction and Leigh disease but there is no correlation between the degree of enzyme deficiency and the severity of the phenotype. PMID: 16532470
  11. Increased CF6 may be responsible in part for decreased prostacyclin observed in coronary heart disease, in particular after PTCA and stent therapy. Potential risk factor for coronary heart disease. PMID: 17456993
  12. in vascular endothelial cells both CF6 (coupling factor 6) and Angiotensin II downregulate PECAM-1 (platelet/endothelial cell adhesion molecule) expression via activation of c-Src kinase PMID: 18243211
  13. Coupling factor 6 enhances Src-mediated responsiveness to angiotensin II in resistance arterioles and cells. PMID: 19106112

Show More

Hide All

Subcellular Location Mitochondrion, Mitochondrion inner membrane
Protein Families Eukaryotic ATPase subunit F6 family
Database Links

HGNC: 847

OMIM: 603152

KEGG: hsa:522

STRING: 9606.ENSP00000389649

UniGene: Hs.246310

Most popular with customers

Newsletters

Get all the latest information on Events, Sales and Offers. Sign up for newsletter today.

© 2007-2020 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1