Recombinant Human Eukaryotic peptide chain release factor subunit 1 (ETF1)

Code CSB-YP007840HU
MSDS
Size Pls inquire
Source Yeast
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-EP007840HU
MSDS
Size Pls inquire
Source E.coli
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-EP007840HU-B
MSDS
Size Pls inquire
Source E.coli
Conjugate Avi-tag Biotinylated
E. coli biotin ligase (BirA) is highly specific in covalently attaching biotin to the 15 amino acid AviTag peptide. This recombinant protein was biotinylated in vivo by AviTag-BirA technology, which method is BriA catalyzes amide linkage between the biotin and the specific lysine of the AviTag.
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-BP007840HU
MSDS
Size Pls inquire
Source Baculovirus
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-MP007840HU
MSDS
Size Pls inquire
Source Mammalian cell
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Purity
>85% (SDS-PAGE)
Target Names
ETF1
Uniprot No.
Alternative Names
Cl1 protein; D5S1995; ERF; eRF1; ERF1_HUMAN; ETF1; Eukaryotic peptide chain release factor subunit 1; Eukaryotic release factor 1; Eukaryotic translation termination factor 1; MGC111066; Polypeptide chain release factor 1; Protein Cl1; RF1; Sup45 (yeast omnipotent suppressor 45) homolog like 1; SUP45L1; TB3 1; TB3-1
Species
Homo sapiens (Human)
Expression Region
2-437
Target Protein Sequence
ADDPSAADR NVEIWKIKKL IKSLEAARGN GTSMISLIIP PKDQISRVAK MLADEFGTAS NIKSRVNRLS VLGAITSVQQ RLKLYNKVPP NGLVVYCGTI VTEEGKEKKV NIDFEPFKPI NTSLYLCDNK FHTEALTALL SDDSKFGFIV IDGSGALFGT LQGNTREVLH KFTVDLPKKH GRGGQSALRF ARLRMEKRHN YVRKVAETAV QLFISGDKVN VAGLVLAGSA DFKTELSQSD MFDQRLQSKV LKLVDISYGG ENGFNQAIEL STEVLSNVKF IQEKKLIGRY FDEISQDTGK YCFGVEDTLK ALEMGAVEIL IVYENLDIMR YVLHCQGTEE EKILYLTPEQ EKDKSHFTDK ETGQEHELIE SMPLLEWFAN NYKKFGATLE IVTDKSQEGS QFVKGFGGIG GILRYRVDFQ GMEYQGGDDE FFDLDDY
Protein Length
Full Length of Mature Protein
Tag Info
Tag type will be determined during the manufacturing process.
The tag type will be determined during production process. If you have specified tag type, please tell us and we will develop the specified tag preferentially.
Form
Lyophilized powder
Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
Buffer before Lyophilization
Tris/PBS-based buffer, 6% Trehalose, pH 8.0
Reconstitution
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20℃/-80℃. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting and FAQs
Storage Condition
Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time
Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Note: All of our proteins are default shipped with normal blue ice packs, if you request to ship with dry ice, please communicate with us in advance and extra fees will be charged.
Notes
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet
Please contact us to get it.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
Directs the termination of nascent peptide synthesis (translation) in response to the termination codons UAA, UAG and UGA. Component of the transient SURF complex which recruits UPF1 to stalled ribosomes in the context of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons. Required for SHFL-mediated translation termination which inhibits programmed ribosomal frameshifting (-1PRF) of mRNA from viruses and cellular genes.
Gene References into Functions
  1. Report molecular dynamics free energy calculations on termination complexes, where relative eRF1 binding free energies to different cognate and near-cognate codons are evaluated. The simulations show a high and uniform discrimination against the near-cognate codons, that differ from the cognate ones by a single nucleotide, and reveal the structural mechanisms behind the precise decoding by eRF1. PMID: 29127299
  2. The GTS loop forms a switch that is key for the multiple codon recognition capability of eRF1. PMID: 26725946
  3. New information has been presented on architecture of the eRF1 binding site on mammalian ribosome at various translation termination steps and on conformational rearrangements induced by binding of the release factors. PMID: 26655225
  4. cryo-electron microscopy (cryo-EM) structures at 3.5-3.8 A resolution of ribosomal complexes containing eRF1 interacting with each of the three stop codons in the A-site PMID: 26245381
  5. We characterized a region of the eRF1 N-terminal domain, the P1 pocket, that we had previously shown to be involved in termination efficiency. We identified two residues, arginine 65 and lysine 109, as critical for recognition of the three stop codons. PMID: 25735746
  6. C4 lysyl hydroxylation of eRF1 is required for optimal translational termination PMID: 24486019
  7. The role of the 41 invariant and conserved N-domain residues in stop codon decoding by human eRF1 was determined. PMID: 23435318
  8. This work provides mechanistic insight into the coordination between GTP hydrolysis by eRF3 and subsequent peptide release by eRF1. PMID: 23091004
  9. Authors propose that structural variability in the GTS loop may underline the switching between omnipotency and unipotency of eRF1, implying the direct access of the GTS loop to the stop codon. PMID: 22383581
  10. The NMR data show that the N-domain of human eRF1 exists in two conformational states. PMID: 22517631
  11. Molecular modeling of eRF1 in the 80S termination complex showed that eRF1 fragments neighboring guanines and adenines of stop signals are compatible with different N domain conformations of eRF1. PMID: 21602268
  12. By molecular modeling, the eRF1 molecule can be fitted to the A site proximal to the P-site-bound tRNA and to a stop codon in mRNA via a large conformational change to one of its three domains. PMID: 20688868
  13. Data show that depleting eRF1 increased the Gag-Pol to Gag ratio in cells infected with replication-competent virus. PMID: 20418372
  14. bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1 PMID: 11779511
  15. The invariant uridine of stop codons contacts the conserved NIKSR loop in the ribosome PMID: 12356746
  16. codon dependence of human eRF1 binding to the mRNA-ribosome complex PMID: 12909007
  17. the intracellular concentration of the eukaryotic release factor 1 (eRF1) is a critical parameter influencing the efficiency of amino acid incorporation by nonsense suppression PMID: 15716307
  18. Glu55 and Tyr125 residues in the N domain of eRF1 are important for eRF1's decoding function. PMID: 16282590
  19. we describe a novel complex that contains the NMD factors SMG-1 and Upf1, and the translation termination release factors eRF1 and eRF3 (SURF). PMID: 16452507
  20. Results shows eRF1 promotes GTP binding by eRF3. PMID: 16797113
  21. Interface of the interaction of the middle domain of human translation termination factor eRF1 with eukaryotic ribosomes PMID: 19140327
  22. Molecular dynamics simulations show that there is no structural effect on the free RF1 release factor caused by methylation of glutamine185, suggesting that its role is intimately associated with the ribosome environment. PMID: 19265422

Show More

Hide All

Subcellular Location
Cytoplasm.
Protein Families
Eukaryotic release factor 1 family
Database Links

HGNC: 3477

OMIM: 600285

KEGG: hsa:2107

STRING: 9606.ENSP00000353741

UniGene: Hs.483494

icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1