Recombinant Mouse Glucagon (Gcg), partial

Code CSB-YP009315MO
Size $306
Order now
  • (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Greater than 95% as determined by SDS-PAGE.
Not Test
Target Names
Uniprot No.
Research Area
Alternative Names
Mus musculus (Mouse)
Expression Region
Target Protein Sequence
Note: The complete sequence including tag sequence, target protein sequence and linker sequence could be provided upon request.
Mol. Weight
9.7 kDa
Protein Length
Tag Info
N-terminal 6xHis-tagged
Liquid or Lyophilized powder
Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol. If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20℃/-80℃. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting and FAQs
Storage Condition
Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time
Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Repeated freezing and thawing is not recommended. Store working aliquots at 4℃ for up to one week.
Datasheet & COA
Please contact us to get it.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes.; Potent stimulator of glucose-dependent insulin release. Also stimulates insulin release in response to IL6. Plays important roles on gastric motility and the suppression of plasma glucagon levels. May be involved in the suppression of satiety and stimulation of glucose disposal in peripheral tissues, independent of the actions of insulin. Has growth-promoting activities on intestinal epithelium. May also regulate the hypothalamic pituitary axis (HPA) via effects on LH, TSH, CRH, oxytocin, and vasopressin secretion. Increases islet mass through stimulation of islet neogenesis and pancreatic beta cell proliferation. Inhibits beta cell apoptosis (Probable).; Stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, from the stomach to the colon is the principal target for GLP-2 action. Plays a key role in nutrient homeostasis, enhancing nutrient assimilation through enhanced gastrointestinal function, as well as increasing nutrient disposal. Stimulates intestinal glucose transport and decreases mucosal permeability.; Significantly reduces food intake. Inhibits gastric emptying in humans. Suppression of gastric emptying may lead to increased gastric distension, which may contribute to satiety by causing a sensation of fullness.; May modulate gastric acid secretion and the gastro-pyloro-duodenal activity. May play an important role in intestinal mucosal growth in the early period of life.
Gene References into Functions
  1. Data suggest that Tas1r2 and Tas1r3 are involved in regulation of Glp1 secretion in enteroendocrine cells; 3DG (3-deoxyglucosone) attenuates high glucose-stimulated Glp1 secretion by antagonizing Tas1r2/Tas1r3 subunits and downstream cAMP signaling. (Tas1r2 = sweet taste receptor subunit Tas1r2; Tas1r3 = sweet taste receptor subunit Tas1r3; Glp1 = glucagon-like peptide-1) PMID: 29277113
  2. GPR119 is the oleoyl-lysophosphatidylinositol receptor that is required for GLP-1 secretion in enteroendocrine cells. PMID: 29883799
  3. data show that the CREB/CRTC2-dependent transcriptional pathway is critical for regulating glucose homeostasis by controlling production of GLP-1 from the L cells at the level of transcription, maturation, and exocytosis. PMID: 29118086
  4. the results of the present study indicated that GLP1 may be a promising target for the development of novel therapeutic strategies for HGinduced nephropathy, and may function through the activation of SIRT1 PMID: 29845208
  5. this study, we investigated whether glucagon and glucagon-like peptide-1 (GLP-1), hormones produced by alpha cells, contribute to insulin secretion in INS-1 cells, a beta cell line. Co-treatment with glucagon and exendin-4 (Ex-4), a GLP-1 receptor agonist, additively increased glucose-stimulated insulin secretion in INS-1 cells PMID: 29725251
  6. results show that glucagon controls gene expression and metabolic zonation in the liver through a counterplay with the Wnt/beta-catenin signaling pathway. PMID: 29555772
  7. Data (including data from studies using transgenic and knockout mice) suggest that Glp1/Glp1r signaling in insulin-secreting cells plays important role in development of glucose intolerance in obesity; however, Glp1r is not required in insulin-secreting cells for improvement in glucose intolerance after weight loss due to bariatric surgery (here, vertical sleeve gastrectomy). PMID: 29759973
  8. Data suggest that metabolism of glutamine and related analogs by Gdh in intestinal L-cells explains why Glp1 secretion, but not that of insulin by pancreatic beta-cells, is activated by these secretagogues. (Gdh = glutamate dehydrogenase; Glp1 = glucagon-like peptide 1) PMID: 29229616
  9. Glucokinase governs an alpha-cell metabolic pathway that suppresses secretion at or above normoglycemic levels; abnormal suppression of glucagon secretion deregulates hepatic glucose metabolism and, over time, induces a pre-diabetic phenotype. PMID: 29416045
  10. in colonic crypt cultures, the GLP-1 secretion induced by such Gq + Gs GPR40 agonists is indeed inhibited by blockers of both Gq and Gs and is eliminated by combining these. PMID: 27908836
  11. Enteric GLP-1 activates NO production by enteric neurons that is impaired in type 2 diabetes. Gut microbiota dysbiosis induces enteric neuropathy. Gut microbiota dysbiosis is responsible for the GLP-1 resistance. PMID: 28467926
  12. of glucagon-like peptide-1 in vagotomized mice may prevent VLDL overproduction and insulin resistance induced by high-fat diet. PMID: 29074588
  13. beta-cell function, plasma active GLP-1 levels, the GLP-1R pathway in beta cells and L cell differentiation, were investigated. PMID: 27436347
  14. The role of syntaxin 1A in GLP1 release from intestinal cells as a response to external stimuli is reported. PMID: 28596237
  15. GCG neurons likely stimulate separate populations of downstream cells to produce a change in food intake and glucose homeostasis and that these effects depend on the metabolic state of the animal. PMID: 28218622
  16. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss. PMID: 28292762
  17. pancreatic reactivation of Gcg fully restored the effect of exendin-[9-39] to impair both oral and intraperitoneal glucose tolerance. PMID: 28325479
  18. These findings suggest that TRPV2 activation via actin reorganization induced by Gq and G12/13 signaling is involved in LPI-stimulated GLP-1 secretion in enteroendocrine L cells. PMID: 28533434
  19. These results show novel ex vivo effects of rebaudioside A on enteroendocrine cells of the mouse small intestine and highlight potentially new applications for rebaudioside A in metabolic diseases. PMID: 27798332
  20. critical for the regulation of glucagon secretion in response to glucose in obesity PMID: 27547850
  21. These results strongly suggest that incretins upregulate the TNF-alpha-stimulated IL6 synthesis in osteoblasts, and that the amplifying effect of incretin is exerted via reducing the IkappaB/NFkappaB pathway through the adenylyl cyclase-cAMP system. PMID: 28204823
  22. These results indicated that 5rolGLP-HV had dual-function in treating diabetes and preventing thrombosis. PMID: 26780765
  23. Glucagon-like peptide-1 regulates calcium homeostasis and electrophysiological activities in cultured cardiomyocytes. PMID: 26930508
  24. GLP-1 release is altered in intestinal cultures from a high fat diet-fed mice. PMID: 26145551
  25. Data show that ginsenoside Rg3 stimulated glucagon-like peptide-1 (GLP-1) secretion in NCI-H716 enteroendocrine cells. PMID: 26675132
  26. GPR119 in L-cells plays a key role in oral lipid-triggered GLP-1 secretion. PMID: 26144594
  27. AMPK antagonizes hepatic glucagon signalling via phosphorylation-induced PDE4B activation PMID: 26952277
  28. Deletion of AMPK alpha 1 and alpha 2 in proglucagon-expressing cells results in increased L-cell mass and elevated circulating GLP-1 levels. PMID: 27010458
  29. The results suggest that TGR5 activation mediates cross-talk between alpha- and beta-cells by switching from glucagon to GLP-1 to restore beta- cell mass and function under hyperglycemic conditions. PMID: 26757816
  30. the acute combined administration of the strongly insulinotropic GLP-1 and glucagon, both in vivo and in vitro, did not induce any additive or synergistic action on glucose-stimulated insulin secretion. PMID: 26119909
  31. Data (including data from studies in transgenic mice) suggest neurotensin/Nts, GLP-1, and peptide YY are closely co-expressed and co-secreted within enteroendocrine cells in ileum mucosa; however, Nts is stored in distinct/separate secretory granules. PMID: 26469136
  32. CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors. PMID: 26586918
  33. These data suggest that GLP-1 released from NTS neurons can reduce highly palatable food intake by suppressing mesolimbic DA signaling. PMID: 26212334
  34. Neuronostatin acts via GPR107 to increase cAMP-independent PKA phosphorylation and proglucagon mRNA accumulation in pancreatic alpha-cells. PMID: 26561648
  35. Data indicate that GCGKO mice, lack all proglucagon-derived peptides, including glucagon and GLP-1 are animal model for studying the development, pathogenesis, and metastasis of pancreatic neuroendocrine tumors (panNETs). PMID: 26192435
  36. Data show that ileal sections were costained for glucagon-like peptide-1 (GLP-1) and tumor necrosis factor receptor TNFR1. PMID: 26270730
  37. Data show that the action of bile acids on -like peptide-1 (GLP-1) secretion is predominantly mediated by G protein-coupled bile acid receptor GPBAR1 (TGR5) located on the basolateral L-cell membrane. PMID: 26280129
  38. The PKC-dependent effect of GLP-1 on membrane potential and electrical activity was mediated by activation of Na(+)-permeable TRPM4 and TRPM5 channels by mobilization of intracellular Ca(2+) from thapsigargin-sensitive Ca(2+) stores PMID: 26571400
  39. It was suggested that increased ileal GPR119 is a potential mechanism by which GLP-1 secretion is enhanced in apoA-IV-/- mice. PMID: 26294669
  40. Hypoxia decreases GLP-1 secretion from the GLUTag cell line, and our findings suggest that the postprandial decrease in oxygen tension in the intestine attenuates GLP-1 secretion. PMID: 25832631
  41. In mice, food intake stimulates oxyntomodulin secretion from the gut, which resets liver transcription rhythms via induction of the core clock genes Per1 and 2. PMID: 25821984
  42. Suggest that endogenous GLP-2 may act as a protective factor against the dysregulation of the glucose metabolism that occurs in mice fed a high fat diet. PMID: 25967277
  43. synaptotagmin-7 is directly activated by GLP-1 signaling and may serve as a drug target for boosting insulin secretion. PMID: 26216970
  44. Glucocorticoid receptor activation in GLP-1-producing cells will diminish the secretory responsiveness of these cells to subsequent carbohydrate stimulation leading to diabetes. PMID: 25853863
  45. The patterns of colocalisation of the K cell marker, glucagon-like insulinotropic peptide, and the L cell markers, glucagon like peptide-1 and peptide YY, in enteroendocrine cells of the small intestine and colon of mouse and pig, were investigated. PMID: 25378285
  46. These data indicate that GLP-1 but not GIP is a key mediator of beta cell mass expansion and related adaptations in pregnancy, triggered in part by generation of intra-islet GLP-1. PMID: 24927416
  47. Data suggest that Firmicutes and Bacteroidetes potentially mediate insulin resistance through modulation of glucagon-like peptide 1 (GLP-1) secretion in obesity. PMID: 25713030
  48. Data suggest that glucagon-like peptide-1 (GLP-1) may be involved in normal sweet taste signal transmission. PMID: 25678625
  49. NUCB2/nesfatin-1 is co-localized with GLP-1 and GIP in small intestinal cells. Data support the hypothesis that nesfatin-1 is present in enteroendocrine cells and that it stimulates incretin secretion. PMID: 25930999
  50. results suggest that the fine-turning of GLP-1 secretion from enteroendocrine L cells is established by the balance between alpha1-, alpha2-, and beta-ARs activation PMID: 25843795

Show More

Hide All

Subcellular Location
Secreted.; [Glucagon-like peptide 1]: Secreted.
Protein Families
Glucagon family
Tissue Specificity
[Glucagon]: Secreted in the A cells of the islets of Langerhans.; [Glucagon-like peptide 1]: Secreted in the A cells of the islets of Langerhans. Secreted from enteroendocrine L cells throughout the gastrointestinal tract. Also secreted in selected neuron
Database Links
icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
Place an order now

I. Product details


II. Contact details


III. Ship To


IV. Bill To