Recombinant Human ATP-sensitive inward rectifier potassium channel 1 (KCNJ1), partial

Code CSB-YP012047HU
Size $276
Order now
Image
  • (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.

Have Questions? Leave a Message or Start an on-line Chat

Product Details

Purity
Greater than 90% as determined by SDS-PAGE.
Target Names
KCNJ1
Uniprot No.
Research Area
Signal Transduction
Alternative Names
ATP regulated potassium channel ROM K; ATP sensitive inward rectifier potassium channel 1; ATP-regulated potassium channel ROM-K; ATP-sensitive inward rectifier potassium channel 1; Inward rectifier K(+) channel Kir1.1; inwardly rectifying K+ channel ; inwardly rectifying subfamily J member 1; IRK1_HUMAN; KCNJ 1; KCNJ; Kcnj1; Kir 1.1; Kir1.1; OTTHUMP00000045938; Potassium channel; Potassium channel inwardly rectifying subfamily J member 1; potassium inwardly-rectifying channel J1; ROMK 1; ROMK 2; ROMK; ROMK1; ROMK2
Species
Homo sapiens (Human)
Source
Yeast
Expression Region
178-391aa
Target Protein Sequence
ILAKISRPKKRAKTITFSKNAVISKRGGKLCLLIRVANLRKSLLIGSHIYGKLLKTTVTPEGETIILDQININFVVDAGNENLFFISPLTIYHVIDHNSPFFHMAAETLLQQDFELVVFLDGTVESTSATCQVRTSYVPEEVLWGYRFAPIVSKTKEGKYRVDFHNFSKTVEVETPHCAMCLYNEKDVRARMKRGYDNPNFILSEVNETDDTKM
Note: The complete sequence including tag sequence, target protein sequence and linker sequence could be provided upon request.
Mol. Weight
26.3kDa
Protein Length
Cytoplasmic Domain
Tag Info
N-terminal 6xHis-tagged
Form
Liquid or Lyophilized powder
Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
Buffer
If the delivery form is liquid, the default storage buffer is Tris/PBS-based buffer, 5%-50% glycerol.
Note: If you have any special requirement for the glycerol content, please remark when you place the order.
If the delivery form is lyophilized powder, the buffer before lyophilization is Tris/PBS-based buffer, 6% Trehalose, pH 8.0.
Reconstitution
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting and FAQs
Storage Condition
Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time
Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Notes
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet & COA
Please contact us to get it.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
In the kidney, probably plays a major role in potassium homeostasis. Inward rectifier potassium channels are characterized by a greater tendency to allow potassium to flow into the cell rather than out of it. Their voltage dependence is regulated by the concentration of extracellular potassium; as external potassium is raised, the voltage range of the channel opening shifts to more positive voltages. The inward rectification is mainly due to the blockage of outward current by internal magnesium. This channel is activated by internal ATP and can be blocked by external barium.
Gene References into Functions
  1. We replicated the methods in a previous study to detect rare and potentially loss-of-function variants in SLC12A3, SLC12A1, and KCNJ1 reducing blood pressure in variant carriers as compared with noncarriers using whole exome sequencing data. Our study confirmed that SLC12A3, SLC12A1, and KCNJ1 are indeed genes protective of hypertension in the general population. PMID: 30113482
  2. The presence of ROMK protein was observed in the inner mitochondrial membrane fraction. Moreover, colocalization of the ROMK protein and a mitochondrial marker in the mitochondria of fibroblast cells was shown by immunofluorescence. PMID: 29458000
  3. Data suggest underlying pathology for some patients with type II Bartter syndrome is linked to stability of ROMK1 in ERAD pathway; using a yeast expression system, cells can be rescued by wild-type (rat) ROMK1 but not by ROMK1 containing any one of four mutations found in (human) type II Bartter syndrome; mutant ROMKs are significantly less stable than wild-type ROMK. (ERAD = endoplasmic reticulum-associated degradation) PMID: 28630040
  4. WNK4 is a substrate of SFKs and the association of c-Src and PTP-1D with WNK4 at Tyr(1092) and Tyr(1143) plays an important role in modulating the inhibitory effect of WNK4 on ROMK PMID: 25805816
  5. knockdown of KCNJ1 in HK-2 cells promoted cell proliferation. Collectively, these data highlight that KCNJ1, low-expressed in ccRCC and associated with poor prognosis, plays an important role in ccRCC cell growth and metastasis PMID: 25344677
  6. The association between polymorphisms in KCNJ1, SLC12A1, and 7 other genes and calcium intake and colorectal neoplasia risk was studied. PMID: 25165391
  7. A KCNJ1 SNP was associated with increased FG during HCTZ treatment. PMID: 22907731
  8. Molecular analysis revealed a compound heterozygous mutation in the KCNJ1 gene, consisting of a novel K76E and an already described V315G mutation, both affecting functional domains of the channel protein. PMID: 23782368
  9. Findings suggest that 11q24 is a susceptible locus for openness, with KCNJ1 as the possible candidate gene. PMID: 23211697
  10. no mutation in the KCNJ1 gene, among patients suffering from bartter and Gitelman syndromes PMID: 21631963
  11. PI3K-activating hormones inhibit ROMK by enhancing its endocytosis via a mechanism that involves phosphorylation of WNK1 by Akt1 and SGK1. PMID: 21355052
  12. THGP modulation of ROMK function confers a new role of THGP on renal ion transport and may contribute to salt wasting observed in FJHN/MCKD-2/GCKD patients. PMID: 21081491
  13. KCNJ1 mutations are associated with Bartter syndrome. PMID: 20219833
  14. ROMK1 is a substrate of PKC and that serine residues 4 and 201 are the two main PKC phosphorylation sites that are essential for the expression of ROMK1 in the cell surface PMID: 12221079
  15. One disease-causing mutation in the ROMK channel truncates the extreme COOH-terminus and induces a closed gating conformation. PMID: 12381810
  16. In a heterozgous Bartter syndrome patient, AA exchanges Arg338Stop & Met357Thr in ROMK exon 5 alter the C-terminus of the ROMK protein & can affect channel function. PMID: 12589089
  17. Findings support the proposed role of ROMK channels in potassium recycling and in the regulation of K+ secretion and present a rationale for the phenotype observed in patients with ROMK deficiency. PMID: 15895241
  18. NH(2)-terminal phosphorylation modifying a COOH-terminal ER retention signal in ROMK1 could serve as a checkpoint for proper subunit folding critical to channel gating. PMID: 15987778
  19. ROMK is antagonistically regulated by long and kidney-specific WNK1 isoforms PMID: 16428287
  20. molecular mechanism for stimulation of endocytosis of ROMK1 by WNK kinases PMID: 17380208
  21. A novel mutation in KCNJ1 in a Bartter syndrome case diagnosed as pseudohypoaldosteronism. PMID: 17401586
  22. CD63 plays a role in the regulation of ROMK channels through its association with RPTPalpha, which in turn interacts with and activates Src family PTK, thus reducing ROMK activity. PMID: 18211905
  23. Members of the Framingham Heart Study were screened for variation in three genes-SLC12A3, SLC12A1 and KCNJ1 causing rare recessive diseases featuring large reductions in blood pressure. PMID: 18391953
  24. Five polymorphisms in the KCNJ1 gene coding for the potassium channel, ROMK, showed associations with mean 24-hour systolic or diastolic blood pressure. PMID: 18443236
  25. Multiple intra- and/or intermolecular interactions of WNK1 domains are at play for regulation of ROMK1 by WNK1 in the kidney. PMID: 18550644
  26. These results confirm the important role of the acidic motif of WNK4 in its protein-protein interaction with the ROMK channel. PMID: 18755144
  27. In a large cohort of ante/neonatal Bartter syndrome, deafness, transient hyperkalaemia and severe hypokalaemic hypochloraemic alkalosis orientate molecular investigations to BSND, KCNJ1 and CLCNKB genes, respectively. PMID: 19096086
  28. hydrophobic leucines at the cytoplasmic end of the inner transmembrane helices comprise the principal pH gate of Kir1.1, a gate that can be relocated from 160-Kir1.1b to 157-Kir1.1b. PMID: 19170254
  29. KS-WNK1 is an important physiological regulator of renal K(+) excretion, likely through its effects on the ROMK1 channel. PMID: 19244242
  30. These results suggest that the conformation of the cytoplasmic pore in the Kir1.1 channel changes in response to pHi gating such that the N- and C-termini move apart from each other at pHi 7.4, when the channel is open. PMID: 19272129
  31. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. PMID: 19349416
  32. c-Src inhibits SGK1-mediated phosphorylation hereby restoring the WNK4-mediated inhibition of ROMK channels thus suppressing K secretion. PMID: 19706464
  33. POSH inhibits ROMK channels by enhancing dynamin-dependent and clathrin-independent endocytosis and by stimulating ubiquitination of ROMK channels. PMID: 19710010

Show More

Hide All

Involvement in disease
Bartter syndrome 2, antenatal (BARTS2)
Subcellular Location
Cell membrane; Multi-pass membrane protein. Note=Phosphorylation at Ser-44 by SGK1 is necessary for its expression at the cell membrane.
Protein Families
Inward rectifier-type potassium channel (TC 1.A.2.1) family, KCNJ1 subfamily
Tissue Specificity
In the kidney and pancreatic islets. Lower levels in skeletal muscle, pancreas, spleen, brain, heart and liver.
Database Links

HGNC: 6255

OMIM: 241200

KEGG: hsa:3758

STRING: 9606.ENSP00000376432

UniGene: Hs.527830

icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
Place an order now

I. Product details

*
*
*
*

II. Contact details

*
*

III. Ship To

*
*
*
*
*
*
*

IV. Bill To

*
*
*
*
*
*
*
*