Recombinant Human Ryanodine receptor 2 (RYR2), partial

Code CSB-YP838802HU
Size Pls inquire
Source Yeast
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-EP838802HU
Size Pls inquire
Source E.coli
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-EP838802HU-B
Size Pls inquire
Source E.coli
Conjugate Avi-tag Biotinylated
E. coli biotin ligase (BirA) is highly specific in covalently attaching biotin to the 15 amino acid AviTag peptide. This recombinant protein was biotinylated in vivo by AviTag-BirA technology, which method is BriA catalyzes amide linkage between the biotin and the specific lysine of the AviTag.
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-BP838802HU
Size Pls inquire
Source Baculovirus
Have Questions? Leave a Message or Start an on-line Chat
Code CSB-MP838802HU
Size Pls inquire
Source Mammalian cell
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Purity
>85% (SDS-PAGE)
Target Names
RYR2
Uniprot No.
Alternative Names
ARVC2; ARVD2; Cardiac muscle ryanodine receptor; Cardiac muscle ryanodine receptor-calcium release channel; hRYR-2; ryanodine receptor 2 (cardiac); Ryanodine receptor 2; RyR; RYR-2; RyR2; RYR2_HUMAN; Type 2 ryanodine receptor; VTSIP
Species
Homo sapiens (Human)
Protein Length
Partial
Tag Info
Tag type will be determined during the manufacturing process.
The tag type will be determined during production process. If you have specified tag type, please tell us and we will develop the specified tag preferentially.
Form
Lyophilized powder
Note: We will preferentially ship the format that we have in stock, however, if you have any special requirement for the format, please remark your requirement when placing the order, we will prepare according to your demand.
Buffer before Lyophilization
Tris/PBS-based buffer, 6% Trehalose, pH 8.0
Reconstitution
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20℃/-80℃. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting and FAQs
Storage Condition
Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time
Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Note: All of our proteins are default shipped with normal blue ice packs, if you request to ship with dry ice, please communicate with us in advance and extra fees will be charged.
Notes
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet
Please contact us to get it.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development.
Gene References into Functions
  1. We sought to identify genetic alterations in cardiac ion channels in patients with micro-ischemic disease. Genetic analysis with Sanger technology and posterior bioinformatic assessment identified two rare variations with potential pathogenic effects (RyR2_p.M4019T and SCN5A_p.H445D) in two individuals. PMID: 28086167
  2. Genetic analysis of the index case identified only one rare novel variant p.Ile11Ser (c.32T>G) in the RyR2 gene. Subsequent familial analysis identified segregation of the genetic variant with the disease. To our knowledge, there has been no previous case report of catecholaminergic polymorphic ventricular tachycardia associated to this missense variant. PMID: 27988446
  3. Our findings provided evidence that Indel polymorphism rs10692285 might contribute to sudden unexplained death (SUD) susceptibility through affecting the expression of RYR2, which suggest that abnormal ion channel activity is very likely to be the underlying mechanism of SUD. PMID: 27987400
  4. Five of the 19 patients (26.3%) had either a pathogenic variant or a likely pathogenic variant in MYBPC3 (n=1), MYH7 (n=1), RYR2 (n=2), or TNNT2 (n=1). All five variants were missense variants that have been reported previously in patients with channelopathies or cardiomyopathies PMID: 28202948
  5. RYR2 variants show possible pathogenic Fibrosis of the Cardiac Conduction system. PMID: 27005929
  6. The most common form of CPVT is due to autosomal dominant variants in the cardiac ryanodine receptor gene (RYR2). PMID: 27157848
  7. Common variants rs790899 and rs1891246 of RYR2 were significantly associated with HG and weight loss. PMID: 27663074
  8. The left atrium / right atrium expression ratio was significantly increased in Atrial fibrillation for ryanodine receptor 2 - gene related to calcium uptake and release, and located on the sarcoplasmic reticulum membrane. PMID: 27494721
  9. a direct interaction exists between RyR2 and CSQ2, is reported. PMID: 27609834
  10. In a national cohort of RyR2 mutation-positive CPVT patients, SCD, ASCD and syncope were presenting events in the majority of probands and also occurred in 36% of relatives identified through family screening. PMID: 28237968
  11. We identified a variant in the RYR2 gene (NM_001035) which involved a change of a glycine to an arginine in position155 of the gene product (c.463G > A, p.Gly155Arg, p.G155R). This RYR2 gene mutation is a novel rare genetic variant as it was not present in any of the international databases consulted. PMID: 28405885
  12. Data suggest that post-translational modifications (phosphorylation, oxidation, and nitrosylation) of RyR2 (ryanodine receptor 2) occur downstream of production of amyloid beta-peptides through ADRB2 (beta2-adrenergic receptor) Ca2+ signaling cascade that activates PKA (protein kinase A). PMID: 28476886
  13. The unique properties of the CaM-F142L mutation may provide novel clues on how to suppress excessive RyR2 Ca(2+) release by manipulating the CaM-RyR2 interaction. PMID: 27927985
  14. Cardiac adrenergic response and progression towards HF proceed unaltered in mice harboring the RyR2-S2808A mutation. Preventing RyR2-S2808 phosphorylation does not preclude a normal sympathetic response nor mitigates the pathophysiological consequences of MI. PMID: 28065668
  15. These results also suggest that altered cytosolic Ca(2+) activation of RyR2 represents a common defect of RyR2 mutations associated with catecholaminergic polymorphic ventricular tachycardia and atrial fibrillation, which could potentially be suppressed by carvedilol or (R)-carvedilol. PMID: 27733687
  16. Long-Term Prognosis of Catecholaminergic Polymorphic Ventricular Tachycardia Patients With Ryanodine Receptor (RYR2) Mutations. PMID: 27523319
  17. Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) Associated With Ryanodine Receptor (RyR2) Gene Mutations- Long-Term Prognosis After Initiation of Medical Treatment. PMID: 27452199
  18. Genotype may predict phenotype in catecholaminergic polymorphic ventricular tachycardia, including a higher risk of life-threatening cardiac events in subjects with variants in the C-terminus of ryanodine receptor-2 (RyR2). [review] PMID: 28084961
  19. RYR2 C2277R mutation is a cause of catecholaminergic polymorphic ventricular tachycardia in a family with high lethality in younger individuals. PMID: 25435091
  20. RYR2, PTDSS1 and AREG are autism susceptibility genes that are implicated in a Lebanese population-based study of copy number variations in this disease. PMID: 26742492
  21. although the EF-hand domain is not required for RyR2 activation by cytosolic Ca(2+), it plays an important role in luminal Ca(2+) activation and SOICR PMID: 26663082
  22. Half of the RYR2 mutations in catecholaminergic polymorphic ventricular tachycardia cohort were de novo, and most of the remaining mutations were inherited from mothers. PMID: 26114861
  23. A deletion of exon 3 of the RYR2 gene was found in a family with catecholaminergic polymorphic ventricular tachycardia. PMID: 25835811
  24. G357S_RyR2 mutation in the cardiac ryanodine receptor was identified in 179 family members with Catecholaminergic polymorphic ventricular tachycardia and in 6 Sudden cardiac death cases. PMID: 25814417
  25. We propose a mechanism in which RYR2 sequence variants result in aberrant stress-induced calcium release into the mitochondria of autonomic neurons, resulting in an increased risk to develop autonomic/functional disease such as cyclic vomiting syndrome. PMID: 25925909
  26. Our study identifies a significant role of RyR2 rs3766871 minor allele for increased susceptibility to VT/VF in a population of implanted with a cardioverter defibrillator patients with heart failure. PMID: 25773045
  27. How phosphorylation of RyR affects channel activity and whether proteins such as the FK-506 binding proteins (FKBP12 and FKBP12.6) are involved in heart failure PMID: 26009186
  28. induced Pluripotent Stem Cell-derived cardiomyocytes are useful for investigating the similarities/differences in the pathophysiological consequences of RyR2 versus CASQ2 mutations underlying Catecholaminergic polymorphic ventricular tachycardia. PMID: 26153920
  29. results support aberrant RyR2 regulation as the disease mechanism for CPVT associated with CaM mutations and shows that CaM mutations not associated with CPVT can also affect RyR2 PMID: 26309258
  30. The results of our pilot study suggest that the rs2819742 variant within the gene for the RYR2 receptor could be associated with statin-induced myalgia/myopathy in patients on low doses of common statins. PMID: 25753936
  31. Data showed RyR2 on two novel familial compound mutations, c.6224T>C and c.13781A>G, with the clinical presentation of idiopathic ventricular fibrillation. PMID: 24950728
  32. functional heterologous expression studies suggest that the RyR2(R420Q) behaves as an aberrant channel, as a loss- or gain-of-function mutation depending on cytosolic intracellular Ca(2+) concentration. PMID: 25440180
  33. Catecholaminergic polymorphic ventricular tachycardia (CPVT) initially diagnosed as idiopathic ventricular fibrillation: the importance of thorough diagnostic work-up and follow-up. PMID: 25456695
  34. In transgenic mice, CPVT-associated RyR2 impaired glucose homeostasis. Pancreatic islets had intracellular Ca2+ leak via oxidized and nitrosylated RyR2 channels, activated ER stress response, mitochondrial dysfunction, and decreased insulin release. PMID: 25844899
  35. RYR2 mutations are frequent (9% of ARVC/D probands) and are associated with a conventional phenotype of ARVC/D. PMID: 25041964
  36. Here the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the human RyR2 N-terminal region, are presented. PMID: 25372681
  37. data shed new insights into the structure-function relationship of the NH2-terminal domains of RyR2 and the action of NH2-terminal disease mutations PMID: 25627681
  38. RYR2 exon 3 deletion is frequently associated with left ventricular non-compaction. PMID: 24394973
  39. analysis of arrhythmia mechanisms in a RyR2-linked CPVT mutation (RyR2-A4860G) that depresses channel activity PMID: 25775566
  40. The principal action of flecainide in CPVT is not via a direct interaction with RyR2. Suggest model of flecainide action in which Na(+)-dependent modulation of intracellular Ca(2+) handling attenuates RyR2 dysfunction in CPVT. PMID: 25648700
  41. Rotavirus mimics human RYR2 by producing VP6 protein having high degree of homology towards RYR2 and significant antigenicity with respect to myasthenia gravis associated HLA haplotypes. PMID: 24929545
  42. Mutations in genes encoding cardiac ryanodine receptor 2 (RyR2) have been identified in several patients and are recognized as causing the autosomal dominant and recessive forms of CPVT PMID: 24793461
  43. The S96A HRC mutation disrupts the Ca2+ -microdomain around the RyR2, as it alters the Ca2+ -dependent association of RyR2 and HRC. PMID: 24805197
  44. Suggest that miR-106b-25 cluster-mediated post-transcriptional regulation of RyR2 is a potential molecular mechanism involved in paroxysmal atrial fibrillation pathogenesis. PMID: 25389315
  45. Three novel RYR2 missense mutations have been described in a Kazakh idiopathic ventricular tachycardia study cohort. PMID: 24978818
  46. Calcium-dependent cardiomyopathy is exacerbated by genetic ablation of ryanodine receptor 2. PMID: 24445321
  47. dysregulation of RyR2-mediated Ca(2+) release via aberrant CaM(F90L)-RyR2 interaction is a potential mechanism that underlies familial IVF PMID: 25036739
  48. Previously reported plausible pathogenic missense polymorphism G1886S may not be an independent predisposition factor of sudden unexplained nocturnal death syndrome in the southern Chinese Han population. PMID: 24447446
  49. It mediates calcium release from intracellular calcium stores such as the ER into the cytoplasm.(review) PMID: 24285081
  50. Mutation in RyR2 gene causes diastolic leakage of calcium cytosol and diastolic depolarization of cell's membrane, triggering polymorphic ventricular tachycardia. PMID: 24147812

Show More

Hide All

Involvement in disease
Arrhythmogenic right ventricular dysplasia, familial, 2 (ARVD2); Ventricular tachycardia, catecholaminergic polymorphic, 1, with or without atrial dysfunction and/or dilated cardiomyopathy (CPVT1)
Subcellular Location
Sarcoplasmic reticulum membrane; Multi-pass membrane protein. Membrane; Multi-pass membrane protein. Sarcoplasmic reticulum.
Protein Families
Ryanodine receptor (TC 1.A.3.1) family, RYR2 subfamily
Tissue Specificity
Detected in heart muscle (at protein level). Heart muscle, brain (cerebellum and hippocampus) and placenta.
Database Links

HGNC: 10484

OMIM: 180902

KEGG: hsa:6262

STRING: 9606.ENSP00000355533

UniGene: Hs.109514

icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
webinars: DT3C facilitates antibody internalization X