AKR1C3 Antibody

Code CSB-PA001544GA01HU
Size $600
Order now
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Uniprot No.
Target Names
AKR1C3
Alternative Names
17 beta HSD 5 antibody; 17 beta hydroxysteroid dehydrogenase type 5 antibody; 17-beta-HSD 5 antibody; 17-beta-hydroxysteroid dehydrogenase type 5 antibody; 2-dihydrobenzene-1 antibody; 2-diol dehydrogenase antibody; 20 alpha-hydroxysteroid dehydrogenase antibody; 20-alpha-hydroxysteroid dehydrogenase antibody; 3 alpha hydroxysteroid dehydrogenase type II antibody; 3-alpha-HSD type 2 antibody; 3-alpha-HSD type II antibody; 3-alpha-HSD type II; brain antibody; 3-alpha-hydroxysteroid dehydrogenase type 2 antibody; AK1C3_HUMAN antibody; AKR1 C3 antibody; Akr1c18 antibody; AKR1C3 antibody; Aldo keto reductase family 1 member C3 antibody; Aldo-keto reductase family 1 member C3 antibody; brain antibody; Chlordecone reductase antibody; Chlordecone reductase homolog HAKRb antibody; DD-3 antibody; DD3 antibody; DDH1 antibody; DDX antibody; Dihydrodiol dehydrogenase 3 antibody; Dihydrodiol dehydrogenase type I antibody; Dihydrodiol dehydrogenase X antibody; HA1753 antibody; HAKRB antibody; HAKRe antibody; hluPGFS antibody; HSD17B5 antibody; Indanol dehydrogenase antibody; KIAA0119 antibody; PGFS antibody; Prostaglandin F synthase antibody; Testosterone 17-beta-dehydrogenase 5 antibody; Trans-1 antibody; Trans-1,2-dihydrobenzene-1,2-diol dehydrogenase antibody; Type IIb 3 alpha hydroxysteroid dehydrogenase antibody
Raised in
Rabbit
Species Reactivity
Human
Immunogen
Human AKR1C3
Immunogen Species
Homo sapiens (Human)
Isotype
IgG
Purification Method
Antigen Affinity purified
Concentration
It differs from different batches. Please contact us to confirm it.
Buffer
PBS with 0.1% Sodium Azide, 50% Glycerol, pH 7.3. -20°C, Avoid freeze / thaw cycles.
Tested Applications
ELISA,WB,IHC
Troubleshooting and FAQs
Storage
Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
Lead Time
Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Acts as a NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain and regulates the metabolism of androgens, estrogens and progesterone. Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH. Acts preferentially as a 17-ketosteroid reductase and has the highest catalytic efficiency of the AKR1C enzyme for the reduction of delta4-androstenedione to form testosterone. Reduces prostaglandin (PG) D2 to 11beta-prostaglandin F2, progesterone to 20alpha-hydroxyprogesterone and estrone to 17beta-estradiol. Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol). Displays also retinaldehyde reductase activity toward 9-cis-retinal.
Gene References into Functions
  1. Genotype data on the AKR1C3 rs12529 SNP indicates that all three prostate cancer groups (New Zealanders, African Americans, and Caucasian Americans) have similar genotype and allele frequencies. The highest percentage of high-risk PC as a percentage of all PC were recorded for ever-smoker AA men with the AKR1C3 rs12529 CC genotype while the lowest was recorded for never-smoker NZ men with the CG+GG genotypes. PMID: 29920533
  2. AKR1C3 is a novel epithelial-mesenchymal transition driver in prostate cancer metastasis through activating ERK signaling. PMID: 30139661
  3. The GG genotype of AKR1C3 rs10508293 is associated with decreased risk for preeclampsia. PMID: 29777907
  4. AKR1C3 transcriptional regulation and its role in prostate cancer progression [review] PMID: 28359237
  5. Overexpression of AKR1C3 could result in the accumulation of prostaglandin F2alpha (PGF2alpha), which can not only promote prostate cancer cell 's proliferation but also could enhance prostate cancer cells resistance to radiation. PMID: 27385003
  6. The replacement of C154 with a residue possessing a bulky aromatic side-chain impairs the folding of the alpha-helix containing C154 and its neighboring secondary structures, leading to low thermostability of AKR1C3. PMID: 28025170
  7. Data suggest that, in breast cancer cells, expression of HSD17B5 and expression of GRP78 (an apoptosis inhibitor) are strongly but negatively correlated; GRP78 knockdown decreases breast cancer cell viability whereas HSD17B5 knockdown increases cell viability and cell proliferation. (HSD17B5, 17-beta-hydroxysteroid dehydrogenase 5; GRP78, 78 kDa glucose-regulated protein) PMID: 28457968
  8. AKR1C3 is the primary enzyme and CBR1 is a minor enzyme responsible for warfarin reduction in human liver cytosol. PMID: 27055738
  9. the present study suggests that AKR1C1, AKR1C2, AKR1C3, and AKR1C4 are closely associated with drug resistance to both CDDP and 5FU, and that mefenamic acid, an inhibitor of AKR1C, restores sensitivity through inhibition of drug-resistance in human cancer cells. PMID: 28259989
  10. a variant in the promoter region of HSD17B5 related to fetal androgen synthesis influences the genital phenotype in 21-Hydroxylase Deficiency females. PMID: 27082632
  11. Five common AKR1C3 polymorphisms were associated with decreased rates of exemestane catalysis. PMID: 27111237
  12. If our these findings can be reproduced in larger homogeneous cohorts, a genetic stratification based on the AKR1C3 rs12529 single nucleotide polymorphism, can minimize androgen deprivation therapy-related health-related quality of life effects in prostate cancer patients PMID: 27485119
  13. We identified strong associations between the studied AKR1C3 variants and UBC risk. The homozygous variant genotype of rs12529 was found to be inversely associated with UBC, and rs1937920 was shown to be associated with increased risk of UBC. None of the genotypes were found to be significantly associated with tumor characteristics. PMID: 27085562
  14. aldo-keto reductase 1C3-mediated prostaglandin D2 metabolism has a role in keloids PMID: 26308156
  15. The results suggest that decreased expression of AKR1C3 may be involved in development of gastric cancer and can be restored by Sodium Butyrate. PMID: 27019068
  16. AKR1C3 expression is elevated in prostate cancer cell lines and primary prostate cancer, suggesting a link between AKR1C3 levels and the epigenetic status in prostate cancer cells. PMID: 26429394
  17. Aldo-keto reductase 1C3 is overexpressed in skin squamous cell carcinoma (SCC). AKR1C3 affects SCC growth via prostaglandin metabolism. PMID: 24917395
  18. these results indicated that the actions of AKR1C3 can produce FP receptor ligands whose activation results in carcinoma cell survival in breast cancer. PMID: 26170067
  19. and AKR1C3 may serve as a valuable therapeutic target in the treatment of castration-resistant prostate cancer PMID: 25754347
  20. AKR1C3 activation is a critical resistance mechanism associated with enzalutamide resistance. PMID: 25649766
  21. In the present study, crystal structures of complexes of HSD17B5 with structurally diverse inhibitors derived from high-throughput screening were determined. PMID: 25849402
  22. AKR1C3 mRNA expression did not differ between bipolar disorder patients in any affective state or in comparison with healthy control subjects. PMID: 25522430
  23. A catalysis-independent role for AKR1C3 on AR activity via Siah2 has been identified. PMID: 26160177
  24. AKR1C3 mediated doxorubicin resistance might be resulted from the activation of anti-apoptosis PTEN/Akt pathway via PTEN loss. PMID: 25661377
  25. Findings indicate the potential involvement of aldo-keto reductase AKR1C3 in the acquired radioresistance by AKR1C3 overexpression. PMID: 25419901
  26. Higher expression of PLA2G2A, PTGS2, AKR1B1, AKR1C3 and ABCC4 was seen in 22-B endometriosis cells. PMID: 25446850
  27. P450c17 and AKR1C3 inhibition may be an effective combinatorial treatment strategy. PMID: 25514466
  28. AKR1C3 2 G allele carriers exhibited greater increases in heart rate and stimulant and sedative effects of alcohol than C allele homozygotes PMID: 24838369
  29. Data suggest that reduction of daunorubicin/idarubicin is catalyzed by AKR1C3 and contributes to resistance of carcinoma cells to these anthracyclines; expression of AKR1C3 is induced in carcinoma cells following exposure to daunorubicin/idarubicin. PMID: 24832494
  30. AKR1C3 can serve as a promising biomarker for the progression of prostate cancer PMID: 24571686
  31. The -71G HSD17B5 variant is not a major component of the molecular pathogenetic mechanisms of PCOS, although it might contribute to the severity of hyperandrogenemia in women with PCOS and biochemical hyperandrogenism. PMID: 18692800
  32. Significantly higher levels of SRD5A1, AKR1C2, AKR1C3, and HSD17B10 mRNA were however found in bone metastases than in non-malignant and/or malignant prostate tissue PMID: 24244276
  33. Report expression of AKR1C3 in neuroendocrine tumors and adenocarcinomas of pancreas, gastrointestinal tract, and lung. PMID: 24228104
  34. Silencing of AKR1C3 increases LCN2 expression and inhibits metastasis in cervical cancer. PMID: 24316309
  35. Data indicate that fallopian tube and the epithelial component of Brenner tumours (BTs) expressed AKR1C3 and androgen receptor, but the tumour stromal cells showed strong expression of calretinin, inhibin and steroidogenic factor 1 in the majority of BTs. PMID: 24012099
  36. Correlation of aldo-ketoreductase (AKR) 1C3 genetic variant with doxorubicin pharmacodynamics in Asian breast cancer patients. PMID: 23116553
  37. examine the evidence that supports the vital role of AKR1C3 in CRPC and recent developments in the discovery of potent and selective AKR1C3 inhibitors PMID: 23748150
  38. AKR1C3-mediated radioresistance in lung cancer cells is correlated with an arrest in the G2/M cell cycle and a decreased induction of apoptosis. PMID: 23519145
  39. The involvement of up-regulated AKR1C1, AKR1C3 and proteasome in CDDP resistance of colon cancers. PMID: 23165153
  40. Affect further reduction of 3-keto and 20-keto groups catalyzed by AKR1C2 and AKR1C3. PMID: 23183084
  41. AKR1C3 can be considered a therapeutic target in a subgroup of patients with high AKR1C3 expression. PMID: 23196782
  42. Our data suggest that there is no association of HSD17B6 and HSD17B5 variants with the occurrence of Polycystic Ovary Syndrome in the Chinese population PMID: 21039282
  43. Activin A stimulates AKR1C3 expression and growth in human prostate cancer PMID: 23024260
  44. AKR1C3 immunoreactivity was extensively present in both adenocarcinoma and squamous cell carcinoma arising from the lung and the gastroesophageal junction, but not in small cell carcinoma. PMID: 22670171
  45. determined the X-ray crystal structure of AKR1C3 with the cofactor NADP+ and the drug-like inhibitor 3-phenoxybenzoic acid bound at a resolution of 1.68 A degrees in space group P212121 PMID: 22505408
  46. AKR1C3 functions in differentiation-associated gene regulation and also has a role in supporting inflammation in atopic dermatitis. PMID: 22170488
  47. Evidence of association of two alleles for alcohol dependence (AD) is found in SRD5A1 and AKR1C3, mediating a protective effect of the minor allele at each AD marker based on the genotype of the second marker. PMID: 21323680
  48. the pro-proliferative action of AKR1C3 in HL-60 cells involves the retinoic acid signalling pathway and that this is in part due to the retinaldehyde reductase activity of AKR1C3 PMID: 21851338
  49. role of AKR1C3 in the metabolism of testosterone and progesterone via the 5beta-reductase pathway. PMID: 21521174
  50. enhanced metabolism of progesterone by SRD5A1 and the 20alpha-HSD and 3alpha/beta-HSD activities of AKR1C1, AKR1C2 and AKR1C3 PMID: 21232532

Show More

Hide All

Subcellular Location
Cytoplasm.
Protein Families
Aldo/keto reductase family
Tissue Specificity
Expressed in many tissues including adrenal gland, brain, kidney, liver, lung, mammary gland, placenta, small intestine, colon, spleen, prostate and testis. High expression in prostate and mammary gland. In the prostate, higher levels in epithelial cells
Database Links

HGNC: 386

OMIM: 603966

KEGG: hsa:8644

STRING: 9606.ENSP00000369927

UniGene: Hs.78183

icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
webinars: DT3C facilitates antibody internalization X
Place an order now

I. Product details

*
*
*
*

II. Contact details

*
*

III. Ship To

*
*
*
*
*
*
*

IV. Bill To

*
*
*
*
*
*
*
*