Human TAR DNA-binding protein 43 (TARDBP/TDP43) ELISA kit

Instructions
Code CSB-E17007h
Size 96T,5×96T,10×96T
Trial Size 24T ELISA kits trial application
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Description

The Human TAR DNA-binding protein 43 (TARDBP/TDP43) ELISA kit allows for the in vitro quantitative determination of TDP43 concentrations in serum, plasma, cell culture supernates, or cerebrospinal fluid (CSF). It is not intended for diagnostic use and only used for scientific research. The kit has undergone rigorous quality control in multiple parameters, including sensitivity, specificity, precision, linearity, recovery, and inter-batch difference. Refer to the product instructions for more details.

This assay employs the quantitative sandwich enzyme immunoassay technique, in which TDP43 in the samples or standards are sandwiched between pre-coated TDP43 antibody and Biotin-conjugated TDP43 antibody. HRP-avidin is then added to the wells. Following a wash to remove any unbound reagent, the TMB substrate solution is added to the wells and color develops in proportion to the amount of TDP43 bound in the initial step. The color development is stopped upon adding the stop solution, and the intensity of the color is measured at 450 nm via a microplate reader. The levels of TDP43 in the samples can be determined by referring to the O.D. (optical density) of the samples to the standard curve.

TDP43 is a highly conserved nuclear RNA/DNA-binding protein belonging to the heterogeneous nuclear ribonucleoprotein (hnRNP) family. Normally, TDP43 is mainly located in the nucleus and exerts effects in the regulation of RNA processing, such as alternative splicing, transcriptional modulation, and mRNA stabilization. It undergoes cleavage, hyperphosphorylation, and ubiquitination under pathological conditions, resulting in TDP43 accumulation and aggregation in the cytoplasm. The accumulation of TDP43 aggregates in the central nervous system (CNS) has been found in many neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer’s disease (AD).

Target Name TAR DNA binding protein
Alternative Names ALS10 ELISA Kit; OTTHUMP00000002171 ELISA Kit; OTTHUMP00000002172 ELISA Kit; OTTHUMP00000002173 ELISA Kit; TADBP_HUMAN ELISA Kit; TAR DNA binding protein 43 ELISA Kit; TAR DNA binding protein ELISA Kit; TAR DNA-binding protein 43 ELISA Kit; TARDBP ELISA Kit; TDP 43 ELISA Kit; TDP-43 ELISA Kit; TDP43 ELISA Kit
Abbreviation TARDBP
Uniprot No. Q13148
Species Homo sapiens (Human)
Sample Types serum, plasma, cell culture supernates, cerebrospinal fluid (CSF)
Detection Range 0.312 ng/mL-20 ng/mL
Sensitivity 0.078 ng/mL
Assay Time 1-5h
Sample Volume 50-100ul
Detection Wavelength 450 nm
Research Area Others
Assay Principle quantitative
Measurement Sandwich
Precision
Intra-assay Precision (Precision within an assay): CV%<8%      
Three samples of known concentration were tested twenty times on one plate to assess.  
Inter-assay Precision (Precision between assays): CV%<10%      
Three samples of known concentration were tested in twenty assays to assess.    
             
Linearity
To assess the linearity of the assay, samples were spiked with high concentrations of human TDP43 in various matrices and diluted with the Sample Diluent to produce samples with values within the dynamic range of the assay.
  Sample Serum(n=4)  
1:1 Average % 86  
Range % 80-93  
1:2 Average % 100  
Range % 95-104  
1:4 Average % 92  
Range % 88-95  
1:8 Average % 97  
Range % 90-104  
Recovery
The recovery of human TDP43 spiked to levels throughout the range of the assay in various matrices was evaluated. Samples were diluted prior to assay as directed in the Sample Preparation section.
Sample Type Average % Recovery Range  
Serum (n=5) 98 91-104  
EDTA plasma (n=4) 96 90-102  
             
             
Typical Data
These standard curves are provided for demonstration only. A standard curve should be generated for each set of samples assayed.
ng/ml OD1 OD2 Average Corrected  
20 2.360 2.296 2.328 2.201  
10 1.568 1.570 1.569 1.442  
5 1.026 1.061 1.044 0.917  
2.5 0.653 0.679 0.666 0.539  
1.25 0.433 0.459 0.446 0.319  
0.625 0.304 0.321 0.313 0.186  
0.312 0.219 0.223 0.221 0.094  
0 0.128 0.126 0.127    
Materials provided
  • A micro ELISA plate --- The 96-well plate has been pre-coated with an anti-human TDP43 antibody. This dismountable microplate can be divided into 12 x 8 strip plates.
  • Two vials lyophilized standard ---Dilute a bottle of the standard at dilution series, read the OD values, and then draw a standard curve.
  • One vial Biotin-labeled TDP43 antibody (100 x concentrate) (120 μl/bottle) ---Act as the detection antibody.
  • One vial HRP-avidin (100 x concentrate) (120 μl/bottle) ---Bind to the detection antibody and react with the TMB substrate to make the solution chromogenic.
  • One vial Biotin-antibody Diluent (15 ml/bottle) ---Dilute the Biotin-antibody.
  • One vial HRP-avidin Diluent (15 ml/bottle) ---Dilute the HRP-avidin solution.
  • One vial Sample Diluent (50 ml/bottle)---Dilute the sample to an appropriate concentration.
  • One vial Wash Buffer (25 x concentrate) (20 ml/bottle) ---Wash away unbound or free substances.
  • One vial TMB Substrate (10 ml/bottle) ---Act as the chromogenic agent. TMB interacts with HRP, eliciting the solution turns blue.
  • One vial Stop Solution (10 ml/bottle) ---Stop the color reaction. The solution color immediately turns from blue to yellow.
  • Four Adhesive Strips (For 96 wells) --- Cover the microplate when incubation.
  • An instruction manual
Materials not provided
  • A microplate reader capable of measuring absorbance at 450 nm, with the correction wavelength set at 540 nm or 570 nm.
  • An incubator can provide stable incubation conditions up to 37°C±5°C.
  • Centrifuge
  • Vortex
  • Squirt bottle, manifold dispenser, or automated microplate washer
  • Absorbent paper for blotting the microtiter plate
  • 50-300ul multi-channel micropipette
  • Pipette tips
  • Single-channel micropipette with different ranges
  • 100ml and 500ml graduated cylinders
  • Deionized or distilled water
  • Timer
  • Test tubes for dilution
Troubleshooting
and FAQs
ELISA kit FAQs
Storage Store at 2-8°C. Please refer to protocol.
Lead Time 3-5 working days

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Earn $30 Amazon Card or 20μL/μg CUSABIO Trial Size Antibody. Details of rewards >>

Target Data

Function DNA and RNA-binding protein which regulates transcription and splicing. Involved in the regulation of CFTR splicing. It promotes CFTR exon 9 skipping by binding to the UG repeated motifs in the polymorphic region near the 3'-splice site of this exon. The resulting aberrant splicing is associated with pathological features typical of cystic fibrosis. May also be involved in microRNA biogenesis, apoptosis and cell division. Can repress HIV-1 transcription by binding to the HIV-1 long terminal repeat. Stabilizes the low molecular weight neurofilament (NFL) mRNA through a direct interaction with the 3' UTR.
Gene References into Functions
  1. TDP-43 deposition leads to targeted RNA instability in amyotrophic lateral sclerosis and frontotemporal dementia PMID: 30030424
  2. CHCHD10 mutations have a role in cytoplasmic TDP-43 accumulation and synaptic integrity PMID: 28585542
  3. Study confirms the high expression of hTDP-43 in the CNS, increased microgliosis and motor deficits, exhibiting further prominent ALS/FTLD pathologies, such as cytoplasmic and insoluble TDP-43 in TAR6/6 mice. This model represents not only pathological TDP-43 expression but also disease-relevant posttranslational changes. PMID: 29787578
  4. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. PMID: 28711596
  5. Findings highlight that the phosphatase regulator, GADD34, also functions as a kinase scaffold in response to chronic oxidative stress and recruits CK1 and oxidized TDP-43 to facilitate its phosphorylation, as seen in TDP-43 proteinopathies. PMID: 29109149
  6. We identified impaired RNA metabolism, secondary to TDP-43 loss of function, as a possible pathological mechanism of HSPB8 toxicity, leading to muscle and nerve degeneration PMID: 29029362
  7. the introduction of SOD1(G93A) and TDP43(A315T), established Amyotrophic lateral sclerosis (ALS)-related mutations, changed the subcellular expression and localization of RNAs within the neurons, showing a spatial specificity to either the soma or the axon. Altogether, we provide here the first combined inclusive profile of mRNA and miRNA expression in two ALS models at the subcellular level PMID: 28300211
  8. These data provide structural detail for the established mechanistic role of the well-folded TDP-43 NTD in splicing and link this function to liquid-liquid phase separation. PMID: 29438978
  9. TDP43 alters most splicing events with splicing factor SRSF3 in triple-negative breast cancer. PMID: 29581274
  10. Of the whole cohort of patients with Motor Neuron Disease and Frontotemporal Dementia, 1 patient harboured a mutation in the TAR DNA-binding protein (TARDBP) gene. PMID: 29886477
  11. Study demonstrated TDP-43/pTDP-43 deposition in skin nerves in ALS patients. Although the mechanisms underlying TDP-43 in ALS are currently unknown, its detection is of interest, and the deposition may occur not only in ALS but also during the aging process which is based on observations of the present study. PMID: 29804146
  12. Both ALS and FTD patients presented with higher TDP-43 and tauT levels compared to the control group. The combination of biomarkers in the form of the TDP-43 x tauT / tauP-181 formula achieved the best discrimination between ALS or FTD and controls, with sensitivities and specificities >0.8. PMID: 28848086
  13. TDP-43 turnover and toxicity depend in part upon the endocytosis pathway. TDP-43 inhibits endocytosis, and co-localizes strongly with endocytic proteins, including in amyotrophic lateral sclerosis patient tissue. PMID: 29233983
  14. more selective group of neurons appears to be affected in frontotemporal lobar degeneration (FTLD)-TDP and FTLD-FUS than in FTLD-tau PMID: 28984110
  15. study found a high frequency of the TARDBP p.M337 V mutation in familial amyotrophic lateral sclerosis (ALS) in south-eastern China; the TARDBP-linked ALS patients showed a benign disease course and prolonged survival PMID: 29621978
  16. describe here two cases of apparently sporadic amyotrophic lateral sclerosis associated with mutations, respectively, in SOD1 and TARDP genes PMID: 27494151
  17. Study indicates that there are at least two common patterns of TDP-43 and tau protein misfolding in human brain aging. In patients lacking substantial Alzheimer's disease pathology, cerebral age-related TDP-43 with sclerosis (CARTS) cases tend to have tau neurofibrillary tangles in the hippocampal dentate granule neurons, providing a potential proxy indicator of CARTS. PMID: 28281308
  18. Depletion of TAF15, FUS and TDP-43 in human-induced pluripotent stem cell-derived motor neurons affects different genes. PMID: 27378374
  19. TDP-43 mislocalisation into axons precedes cell death in cortical neurons, and that cytoskeletal structure and function is impaired by expression of either TDP-43 wild-type or mutant constructs in vitro. PMID: 29787572
  20. TDP-43 impairs the induction of multiple key stress genes required to protect from disease by reducing the recruitment of the chromatin remodeler Chd1 to chromatin. PMID: 29153328
  21. The mutation of TARDBP caused amyotrophic lateral sclerosis PMID: 29478603
  22. Cytoplasmic TDP-43 mislocalization and aggregation is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is an RNA-binding protein with a prion-like domain that promotes TDP-43 misfolding. [review] PMID: 27920024
  23. SOD1 mutations were present in 20% of familial amyotrophic lateral sclerosis (ALS) patients and 1.9% of sporadic ALS patients, while FUS mutations were responsible for 13.3% of familial ALS cases, and TARDBP mutations were rare in either familial or sporadic ALS cases. PMID: 27604643
  24. an alpha-helical component in the centre (residues 320-340) of the C-terminal domain is related to the protein's self-association and LLPS. Systematically analysing ALS-related TDP-43 mutants (G298S, M337V, and Q331K) in different buffer conditions at different temperatures, we prove that this phase separation is driven by hydrophobic interactions but is inhibited by electrostatic repulsion. PMID: 28988034
  25. the present study did not demonstrate oxidative phosphorylation defects in TDP-43 mutants PMID: 28482850
  26. both FUS and TDP43 colocalize with active RNA polymerase II at sites of DNA damage along with the DNA damage repair protein, BRCA1, and FUS and TDP43 participate in the prevention or repair of R loop-associated DNA damage, a manifestation of aberrant transcription and/or RNA processing PMID: 27849576
  27. The data of this study suggest that TDP-43 pathology is associated with age and exacerbated by the presence of concomitant Alzheimer's disease pathology. PMID: 27495267
  28. The A382T mutation in TARDBP caused a reduction in the ability of cells to respond to stress through loss of TDP-43 function in stress granule nucleation. The pathogenetic action revealed in study model does not seem to be mediated by changes in the localization of the TDP-43 protein. PMID: 28172957
  29. TDP-43 competes with other splicing factors for binding to cryptic exons and can repress cryptic exon inclusion. PMID: 28549443
  30. Study shows that TDP-43 is deposited in the olfactory bulb in Alzheimer's disease, albeit of low frequency. The deposition appears to be a late occurrence compared to TDP-43 deposition in other brain regions. PMID: 26810591
  31. ALS-mutant linked TDP-43 mutations expressed at moderate levels in a pattern mimicking endogenous TDP-43 also cause toxicity in a non-cell autonomous manner. Eliminating mutant TDP-43Q331K synthesis in a proportion of motor neurons delayed disease onset, reduced aberrant nuclear morphology in those neurons at early disease stages, and almost eliminated age-dependent accelerated death of those motor neurons. PMID: 28357566
  32. Study reports that cryptic exon incorporation occurred not only in Alzheimer' disease brains exhibiting TDP-43 pathology, but also in neurons lacking cytoplasmic inclusion but exhibiting nuclear clearance of TDP-43. PMID: 28332094
  33. Acetylation of the protein triggers TDP-43 pathology in cultured cells and mouse skeletal muscle, which can be cleared through an HSF1-dependent chaperone mechanism that disaggregates the protein. PMID: 28724966
  34. These studies showed that physiological oligomerization of TDP-43 is mediated through its N-terminal domain, which forms functional and dynamic oligomers antagonizing pathologic aggregation. PMID: 28663553
  35. Expression of PFN1 mutants induces accumulation of TDP-43, and promotes conversion of normal TDP-43 into an abnormal form. These results provide new insight into the mechanisms of TDP-43 proteinopathies and other diseases associated with amyloid-like protein deposition. PMID: 27432186
  36. Study reports the altered expression and/or mislocalization of the TAR-DNA binding protein 43 (TDP-43) in both niemann-pick disease type C mouse and in a human neuronal model of the disease. Results extend the importance of the role of TDP-43 in neurodegenerative disease and further highlight the need to prioritize the targeting of this protein to develop novel therapeutic strategies. PMID: 27193329
  37. This study demonstrated that increased rates of TDP-43-associated hippocampal atrophy might occur at least 10 years before death in patient with Alzheimer disease. PMID: 28919059
  38. Authors observed impaired levels of glutathione (downstream Nrf2 antioxidant) in TDP-43M337V patient fibroblasts and astrocyte cultures from TDP-43Q331K mice, indicative of elevated oxidative stress and failure of some upregulated antioxidant genes to be translated into protein. PMID: 28334913
  39. removing the human orthologs of Hrb27c (DAZAP1) in human neuronal cell lines can correct several pre-mRNA splicing events altered by TDP-43 depletion PMID: 28575377
  40. TDP-43 suppressed tau expression by promoting its mRNA instability through the UG repeats of its 3-UTR. The C-terminal region of TDP-43 was required for this function.The level of TDP-43, which is decreased in AD brains, was found to correlate negatively with the tau level in human brain. PMID: 28335005
  41. Amyotrophic lateral sclerosis mutations disrupt phase separation mediated by alpha-helical structure in the TDP-43 low-complexity C-terminal domain. PMID: 27545621
  42. we demonstrated cytoplasmic TDP-43 aggregate formation in neuronal and glial cells following adenoviral transduction of WT and CTF TDP-43 under MG-132 treatment. These TDP-43 aggregates were phosphorylated and ubiquitinated and consisted of electron-dense granules. PMID: 28599005
  43. emphasize the importance of distinguishing cerebral age-related TDP-43 with sclerosis from late-onset frontotemporal lobar degeneration with TDP-43 pathology and from advanced Alzheimer disease with TDP-43 pathology PMID: 28467211
  44. Mutant and wild type human TDP-43 replacing the endogenous Drosophila gene reveals phosphorylation and ubiquitination in mutant lines in the absence of viability or lifespan defects. PMID: 28686708
  45. The study establishes a functional/physical partnership between FMRP and TDP-43 that mechanistically links several neurodevelopmental disorders and neurodegenerative diseases. PMID: 27518042
  46. By silencing TDP-43, authors saw significant inhibition of cell proliferation and metastasis in A375 and WM451 cells. TDP-43 knockdown could suppress glucose transporter type-4 (GLUT4) expression and reduce glucose uptake. PMID: 27786596
  47. The present study, based on 15 cases staged for pTDP-43 pathology, reports the finding that pathologically altered TDP-43 in Betz cells reacts differently than that in bulbar or spinal alpha-motoneurons. The major differences between the two types of histological profiles are discussed within the context of their possible consequences and implications for the potential further progression or spread of the pTDP-43 lesions. PMID: 27757524
  48. This study have shown that TDP-43-positive cytoplasmic inclusions were frequently found in the amygdala of pathologically and genetically confirmed cases of Frontotemporal Lobar Degeneration and Motor Neuron Disease. PMID: 28859337
  49. Results indicated that a range of disease specific TDP-43 variants are generated in amyotrophic lateral sclerosis patients with different variants being generated in sporadic and familial cases. PMID: 28122516
  50. heterogeneous structural reorganization and decreased stability of the truncated RRM2 domain PMID: 28793209

Show More

Hide All

Involvement in disease Amyotrophic lateral sclerosis 10 (ALS10)
Subcellular Location Nucleus
Tissue Specificity Ubiquitously expressed. In particular, expression is high in pancreas, placenta, lung, genital tract and spleen.
Database Links

HGNC: 11571

OMIM: 605078

KEGG: hsa:23435

STRING: 9606.ENSP00000240185

UniGene: Hs.300624

Newsletters

Get all the latest information on Events, Sales and Offers. Sign up for newsletter today.

© 2007-2021 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1