Phospho-POLR2A (S2) Recombinant Monoclonal Antibody

Code CSB-RA018327A02phHU
Size US$210
Order now
Image
  • Western Blot
    Positive WB detected in Hela whole cell lysate,A549 whole cell lysate,293 whole cell lysate
    All lanes Phospho-POLR2A antibody at 1.02μg/ml
    Secondary
    Goat polyclonal to rabbit IgG at 1/50000 dilution
    Predicted band size: 270 KDa
    Observed band size: 270 KDa
  • IHC image of CSB-RA018327A02phHU diluted at 1:100 and staining in paraffin-embedded human ovarian cancer performed on a Leica BondTM system. After dewaxing and hydration, antigen retrieval was mediated by high pressure in a citrate buffer (pH 6.0). Section was blocked with 10% normal goat serum 30min at RT. Then primary antibody (1% BSA) was incubated at 4℃ overnight. The primary is detected by a biotinylated secondary antibody and visualized using an HRP conjugated SP system.
  • Immunofluorescence staining of Hela cells with CSB-RA018327A02phHU at 1:100,counter-stained with DAPI. The cells were fixed in 4% formaldehyde, permeabilized using 0.2% Triton X-100 and blocked in 10% normal Goat Serum. The cells were then incubated with the antibody overnight at 4℃. The secondary antibody was Alexa Fluor 488-congugated AffiniPure Goat Anti-Rabbit IgG (H+L).
  • Immunoprecipitating Phospho-POLR2A in Hela whole cell lysate
    Lane 1: Rabbit control IgG(1μg)instead of CSB-RA018327A02phHU in Hela whole cell lysate. For western blotting,a HRP-conjugated Protein G antibody was used as the secondary antibody (1/2000)
    Lane 2: CSB-RA018327A02phHU(3μg)+ Hela whole cell lysate(1mg)
    Lane 3: Hela whole cell lysate (20μg)
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Uniprot No.
Target Names
POLR2A
Alternative Names
DNA directed RNA polymerase II A antibody; DNA-directed RNA polymerase II largest subunit RNA polymerase II 220 kd subunit antibody; DNA-directed RNA polymerase II subunit A antibody; DNA-directed RNA polymerase II subunit RPB1 antibody; DNA-directed RNA polymerase III largest subunit antibody; hRPB220 antibody; hsRPB1 antibody; POLR2 antibody; Polr2a antibody; POLRA antibody; Polymerase (RNA) II (DNA directed) polypeptide A 220kDa antibody; Polymerase (RNA) II (DNA directed) polypeptide A antibody; RNA polymerase II subunit B1 antibody; RNA-directed RNA polymerase II subunit RPB1 antibody; RPB1 antibody; RPB1_HUMAN antibody; RPBh1 antibody; RpIILS antibody; RPO2 antibody; RPOL2 antibody
Species Reactivity
Human
Immunogen
A synthesized peptide derived from Human Phospho-POLR2A (S2)
Immunogen Species
Homo sapiens (Human)
Conjugate
Non-conjugated
Clonality
Monoclonal
Isotype
Rabbit IgG
Clone No.
2G1
Purification Method
Affinity-chromatography
Concentration
It differs from different batches. Please contact us to confirm it.
Buffer
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.
Form
Liquid
Tested Applications
ELISA, WB, IHC, IF, IP
Recommended Dilution
Application Recommended Dilution
WB 1:500-1:5000
IHC 1:50-1:200
IF 1:20-1:200
IP 1:200-1:1000
Troubleshooting and FAQs
Storage
Upon receipt, store at -20°C or -80°C. Avoid repeated freeze.
Lead Time
Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Description

The vectors expressing anti-POLR2A antibody were constructed as follows: immunizing an animal with a synthesized peptide derived from human Phospho-POLR2A (S2), isolating the positive splenocyte and extracting RNA, obtaining DNA by reverse transcription, sequencing and screening POLR2A antibody gene, and amplifying heavy and light chain sequence by PCR and cloning them into plasma vectors. After that, the vector clones were transfected into the mammalian cells for production. The product is the recombinant POLR2A antibody. Recombinant POLR2A antibody in the culture medium was purified using affinity-chromatography. It can react with POLR2A protein from Human and is used in the ELISA, WB, IHC, IF, IP.

POLR2A encodes the largest subunit of RNA polymerase II, the polymerase responsible for the synthesis of eukaryotic messenger RNA. The product of POLR2A contains a carboxy-terminal domain consisting of heptapeptide repeats that is essential for polymerase activity. According to some studies, POLR2A may have the following characteristics.
Potential for pH-responsive nanoparticles and precise targeting of POLR2A in TNBC harboring common TP53 genomic alterations. The clinical consequences of a potentially pathogenic variant in POLR2A depend on its effect on pol-II-mediated transcription, as POLR2A variants predicted to cause loss of RPB1 protein are more tolerated than missense variants. BCAR1 promotes proliferation and cell growth, likely through upregulation of POLR2A and subsequent enhancement of catalytic and transferase activity. Humanized monoclonal antibody-induced nuclear localization of CD26 inhibits tumor cell growth by regulating POLR2A transcription.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cleft, the clamp element that moves to open and close the cleft and the jaws that are thought to grab the incoming DNA template. At the start of transcription, a single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol II. A bridging helix emanates from RPB1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol II by acting as a ratchet that moves the RNA-DNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. During transcription elongation, Pol II moves on the template as the transcript elongates. Elongation is influenced by the phosphorylation status of the C-terminal domain (CTD) of Pol II largest subunit (RPB1), which serves as a platform for assembly of factors that regulate transcription initiation, elongation, termination and mRNA processing. Regulation of gene expression levels depends on the balance between methylation and acetylation levels of tha CTD-lysines. Initiation or early elongation steps of transcription of growth-factors-induced immediate early genes are regulated by the acetylation status of the CTD. Methylation and dimethylation have a repressive effect on target genes expression.; (Microbial infection) Acts as an RNA-dependent RNA polymerase when associated with small delta antigen of Hepatitis delta virus, acting both as a replicate and transcriptase for the viral RNA circular genome.
Gene References into Functions
  1. XPC is an RNA polymerase II cofactor recruiting ATAC coactivator complex to promoters by interacting with E2F1. PMID: 29973595
  2. weak, multivalent interactions between TAF15 fibrils and heptads throughout RNA pol II CTD collectively mediate complex formation. PMID: 28945358
  3. This shows that CDK9 stimulates release of paused polymerase and activates transcription by increasing the number of transcribing polymerases and thus the amount of mRNA synthesized per time. PMID: 28994650
  4. Results identified rs2071504 in POLR2A gene to be associated with poor overall and disease-free survival of patients with an early-stage non-small cell lung cancer. PMID: 28922562
  5. Dara indicate that hydrogen peroxide alters RNA polymerase II (Pol II) occupancy at promoters and enhancers genome-wide. PMID: 28977633
  6. Rpb1/2 dynamics help govern the decision between sense and divergent antisense transcription. PMID: 28506463
  7. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes. PMID: 28331082
  8. Data show that inhibition of VCP/p97, or siRNA-mediated ablation of VCP/p97 impairs ultraviolet radiation (UVR)-induced RNA polymerase II (RNAPII) degradation. PMID: 28036256
  9. Role of chromatin-bound EGFR and ERK kinases in RNA polymerase 2 transcription PMID: 27587583
  10. recurrent somatic mutations in POLR2A hijack this essential enzyme and drive meningioma neoplasia PMID: 27548314
  11. the Elongin A ubiquitin ligase and the CSB protein function together in a common pathway in response to Pol II stalling and DNA damage PMID: 28292928
  12. By studying global gene expression patterns and genome-wide DNA-binding patterns of CGGBP1, it has been shown that a possible mechanism through which it affects the expression of RNA Pol II-transcribed genes in trans depends on Alu RNA. PMID: 25483050
  13. Using a 7,781-sample pan-cancer dataset, we first confirmed this in POLR2A are known to confer elevated sensitivity to pharmacological suppression.hese include the POLR2A interacting protein INTS10 as well as genes involved in mRNA splicing, nonsense-mediated mRNA PMID: 28027311
  14. HIV Tat precisely controls RNA polymerase II recruitment and pause release to fine-tune the initiation and elongation steps in target genes. PMID: 26488441
  15. TOP1 bound at promoters was discovered to become fully active only after pause-release. This transition coupled the phosphorylation of the carboxyl-terminal-domain (CTD) of RNA polymerase II (RNAPII) with stimulation of TOP1 above its basal rate, enhancing its processivity. PMID: 27058666
  16. Its variant is not related to sporadic PD in Chinese Han population. PMID: 26432391
  17. Data suggest RNA polymerase II (POLR2A) is extensively modified on its unique C-terminal domain (CTD) by O-GlcNAc transferase (OGT); efficient O-GlcNAcylation requires a minimum of 20 heptad CTD repeats in POLR2A and more than half of NTD of OGT. PMID: 26807597
  18. Serine phosphorylation stimulates whereas tyrosine phosphorylation inhibits the protein-binding activity of the RNA Pol II C-terminal domain. PMID: 26515650
  19. The amount of RNA polymerase II (RNAPII) on the HIV promoter and other viral regions was strongly diminished in HIV-infected CD4+ cells co-cultivated with cell non-cytotoxic antiviral response-expressing CD8+ cells. PMID: 26499373
  20. Ash2L acts in concert with P53 promoter occupancy to activate RNA Polymerase II by aiding formation of a stable transcription pre-initiation complex required for its activation. PMID: 25023704
  21. Data suggest that RNA polymerase II inhibitors may be a useful class of agent for targeting dormant leukaemia cells. PMID: 23767415
  22. This viral pre-initiation complex is composed of five different proteins in addition to Epstein-Barr virus BcRF1 and interacts with cellular RNA polymerase II PMID: 25165108
  23. Data show that E2F-1 form a complex with RNA polymerase II and protein PURA for transcriptional activation of the secondary promoter. PMID: 24819879
  24. human CD68 gene expression is associated with changes in Pol II phosphorylation and short-range intrachromosomal gene looping PMID: 17583472
  25. Authors show that the NSs protein of Schmallenberg virus (SBV) induces the degradation of the RPB1 subunit of RNA polymerase II and consequently inhibits global cellular protein synthesis and the antiviral response. PMID: 24828331
  26. This study reveals that TCERG1 regulates HIV-1 transcriptional elongation by increasing the elongation rate of RNAPII and phosphorylation of Ser 2 within the carboxyl-terminal domain. PMID: 24165037
  27. Slow Pol II elongation allows weak splice sites to be recognized, leading to higher inclusion of alternative exons. PMID: 24793692
  28. sequence-specific double strand DNA breaks are sufficient to activate the positive transcription elongation factor b (P-TEFb), to trigger hyperphosphorylation of the largest RNA polymerase II carboxyl-terminal-domain (Rpb1-CTD) and to induce activation of p53-transcriptional axis resulting in cell cycle arrest. PMID: 23906511
  29. interaction with nuclear CD26 and POLR2A gene PMID: 23638030
  30. RECQL5 contacts the Rpb1 jaw domain of Pol II at a site that overlaps with the binding site for the transcription elongation factor TFIIS. Binding of RECQL5 to Pol II interferes with the ability of TFIIS to promote transcriptional read-through in vitro. PMID: 23748380
  31. Data show that p68/DdX5 immunoprecipitated with RNA polymerase II (RNAP II) and suggest p68 is important in facilitating beta-catenin and androgen receptor (AR) transcriptional activity in prostate cancer cells. PMID: 23349811
  32. inhibition of the transition of paused RNA PolII to productive elongation, described here for p21(CIP1), is a general mechanism by which transcription factor Sp3 fine-tunes gene expression. PMID: 23401853
  33. RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA. PMID: 23395899
  34. Data indicate that polyamide treatment activates p53 signaling and results in a time- and and dose-dependent depletion of the RNA polymerase II (RNAP2) large subunit RPB1. PMID: 23319609
  35. CTCF binding sites regulate mRNA production, RNA polymerase II (RNAPII) programming, and nucleosome organization of the Kaposi's sarcoma-associated herpesvirus latency transcript control region. PMID: 23192870
  36. site-specific p65 phosphorylation targets NF-kappaB activity to particular gene subsets on a global level by influencing p65 and p-RNAP II promoter recruitment PMID: 23100252
  37. BRD4-driven Pol II phosphorylation at serine 2 plays an important role in regulating lineage-specific gene transcription in human CD4+ T cells. PMID: 23086925
  38. SNAPC1 is a general transcriptional coactivator that functions through elongating RNAPII. PMID: 22966203
  39. Cyclin K1 is the primary cyclin partner for CDK12/CrkRS and it is required for activation of CDK12/CrkRS to phosphorylate the C-terminal domain of RNA Pol II. PMID: 22988298
  40. Studies indicate that the super elongation complex (SEC) consisting of ELL, P-TEFb (CDK9) and MLL required for rapid transcriptional induction in the presence or absence of paused RNA polymerase II (Pol II). PMID: 22895430
  41. Results indicate roles for both the RNA polymerase II C-terminal domain (CTD) and O-GlcNAc in the regulation of transcription initiation. PMID: 22605332
  42. Here, the authors report phosphorylation of Thr4 by Polo-like kinase 3 in mammalian cells. PMID: 22549466
  43. Studies suggest activator-induced structural shifts within Mediator trigger activation of stalled Pol II. PMID: 21326907
  44. These results suggest that Mediator structural shifts induced by activator binding help stably orient pol II prior to transcription initiation within the human mediator-RNA polymerase II-TFIIF assembly. PMID: 22343046
  45. evidence that phosphorylation of Rpb1 CTD Thr4 residues is required specifically for histone mRNA 3' end processing, functioning to facilitate recruitment of 3' processing factors to histone genes PMID: 22053051
  46. Parcs/Gpn3 plays a critical role in the nuclear accumulation of RNAP II, and this function explains the relative importance of Parcs/Gpn3 in cell proliferation. PMID: 21782856
  47. kinetics of RNA polymerase II elongation during co-transcriptional splicing PMID: 21264352
  48. Data show that MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial measurements regarding the initiation of transcription. PMID: 21072189
  49. The deregulation of cellular NIPP1/PP1 holoenzyme affects RNAPII phosphorylation and pointing to NIPP1 as a potential regulatory factor in RNAPII-mediated transcription. PMID: 20941529
  50. Elevated PHD1 concomitant with decreased PHD2 are causatively related to Rpb1 hydroxylation and oncogenesis in human renal clear cell carcinomas with WT VHL gene. PMID: 20978146

Show More

Hide All

Subcellular Location
Nucleus. Cytoplasm. Chromosome.
Protein Families
RNA polymerase beta' chain family
Database Links

HGNC: 9187

OMIM: 180660

KEGG: hsa:5430

STRING: 9606.ENSP00000314949

UniGene: Hs.270017

icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2024 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
webinars: DT3C facilitates antibody internalization X
Place an order now

I. Product details

*
*
*
*

II. Contact details

*
*

III. Ship To

*
*
*
*
*
*
*

IV. Bill To

*
*
*
*
*
*
*
*