Human glyceraldehyde-3-phosphate dehydrogenase (GAPDH/G3PDH) ELISA kit

Instructions
Code CSB-E13911h
Size 96T,5×96T,10×96T
Trial Size 24T ELISA kits trial application
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Target Name glyceraldehyde-3-phosphate dehydrogenase
Alternative Names 38 kDa BFA-dependent ADP-ribosylation substrate ELISA Kit; aging associated gene 9 protein ELISA Kit; Aging-associated gene 9 protein ELISA Kit; BARS-38 ELISA Kit; cb609 ELISA Kit; EC 1.2.1.12 ELISA Kit; Epididymis secretory sperm binding protein Li 162eP ELISA Kit; G3P_HUMAN ELISA Kit; G3PD ELISA Kit; G3PDH ELISA Kit; GAPD ELISA Kit; GAPDH ELISA Kit; Glyceraldehyde 3 phosphate dehydrogenase ELISA Kit; glyceraldehyde 3-PDH ELISA Kit; Glyceraldehyde-3-phosphate dehydrogenase ELISA Kit; HEL-S-162eP ELISA Kit; KNC-NDS6 ELISA Kit; MGC102544 ELISA Kit; MGC102546 ELISA Kit; MGC103190 ELISA Kit; MGC103191 ELISA Kit; MGC105239 ELISA Kit; MGC127711 ELISA Kit; MGC88685 ELISA Kit; OCAS; p38 component ELISA Kit; OCT1 coactivator in S phase; 38-KD component ELISA Kit; peptidyl cysteine S nitrosylase GAPDH ELISA Kit; Peptidyl-cysteine S-nitrosylase GAPDH ELISA Kit; wu:fb33a10 ELISA Kit
Abbreviation GAPDH/G3PDH
Uniprot No. P04406
Species Homo sapiens (Human)
Sample Types serum, plasma, tissue homogenates, cell lysates
Detection Range 31.25 pg/mL-2000 pg/mL
Sensitivity 7.81 pg/mL
Assay Time 1-5h
Sample Volume 50-100ul
Detection Wavelength 450 nm
Research Area Signal Transduction
Assay Principle quantitative
Measurement Sandwich
Precision
Intra-assay Precision (Precision within an assay): CV%<8%
Three samples of known concentration were tested twenty times on one plate to assess.
Inter-assay Precision (Precision between assays): CV%<10%
Three samples of known concentration were tested in twenty assays to assess.
Linearity
To assess the linearity of the assay, samples were spiked with high concentrations of human GAPDH/G3PDH in various matrices and diluted with the Sample Diluent to produce samples with values within the dynamic range of the assay.
 SampleSerum(n=4)
1:1Average %88
Range %81-92
1:2Average %98
Range %94-101
1:4Average %99
Range %94-103
1:8Average %95
Range %89-98
Recovery
The recovery of human GAPDH/G3PDH spiked to levels throughout the range of the assay in various matrices was evaluated. Samples were diluted prior to assay as directed in the Sample Preparation section.
Sample TypeAverage % RecoveryRange
Serum (n=5) 9389-96
EDTA plasma (n=4)9692-98
Typical Data
These standard curves are provided for demonstration only. A standard curve should be generated for each set of samples assayed.
pg/mlOD1OD2AverageCorrected
20002.488 2.321 2.405 2.264
10001.899 1.776 1.838 1.697
5001.234 1.274 1.254 1.113
2500.700 0.688 0.694 0.553
1250.464 0.451 0.458 0.317
62.50.238 0.242 0.240 0.099
31.250.197 0.192 0.195 0.054
00.138 0.144 0.141  
Troubleshooting
and FAQs
ELISA kit FAQs
Storage Store at 2-8°C. Please refer to protocol.
Lead Time 3-5 working days

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Earn $30 Amazon Card or 20μL/μg CUSABIO Trial Size Antibody. Details of rewards >>

Target Data

Function Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations through its ability to stimulate the binding of CHP1 to microtubules (By similarity). Glyceraldehyde-3-phosphate dehydrogenase is a key enzyme in glycolysis that catalyzes the first step of the pathway by converting D-glyceraldehyde 3-phosphate (G3P) into 3-phospho-D-glyceroyl phosphate. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma treatment assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation.
Gene References into Functions
  1. This suggests that RX624 might be useful as a drug against polyglutamine pathologies, and that is could be administered exogenously without affecting target cell physiology. This protective effect was validated by the similar effect of an anti-GAPDH specific antibody. PMID: 28450110
  2. GAPDH can interact with proteins participating in DNA repair, such as APE1, PARP1, HMGB1, and HMGB2. In this review, the functions of GAPDH associated with DNA repair are discussed in detail. PMID: 28601074
  3. Nitric oxide-induced GAPDH aggregation specifically induces mitochondrial dysfunction via permeability transition pore opening, leading to cell death. PMID: 28167533
  4. GAPDH may act as a chaperone in heme transfer to downstream areas PMID: 28315300
  5. NAD(+) inhibited both GAPDH aggregation and co-aggregation with GOSPEL, a hitherto undescribed effect of the coenzyme against the consequences of oxidative stress. PMID: 27282776
  6. Monoclonal Antibodies DSHB-hGAPDH-2G7 and DSHB-hGAPDH-4B7 Against Human Glyceraldehyde-3-Phosphate Dehydrogenase. PMID: 27556912
  7. the present study suggests that GAPDH plays an important role in cancer metastasis by affecting EMT through regulation of Sp1-mediated SNAIL expression. PMID: 27878251
  8. Knockdown of LAMP2A, a CMA-related protein, and TSG101, an mA-related protein, significantly but only partially decreased the punctate accumulation of GAPDH-HT in AD293 cells and primary cultured rat cortical neurons. PMID: 27377049
  9. In conclusion, the data show that two GAPDH binders could be therapeutically relevant in the treatment of injuries stemming from hard oxidative stress. PMID: 26748070
  10. transient silencing of GAPDH reduces intracellular ROS and facilitates increased autophagy, thereby reducing acute hypoxia and reoxygenation injury as well as the resulting apoptosis and necrosis. PMID: 26279122
  11. This review will summarize our current understanding of GAPDH-mediated regulation of RNA function PMID: 26564736
  12. analysis of PSCA level in the peripheral blood of PC patients who underwent radical prostatectomy shows it is related to a GADPH reference level (PSCA/GAPDH ratio) PMID: 26527100
  13. In 60 % of patients with type 2 diabetes, a reversible inhibition of GAPDH is observed. PMID: 25189828
  14. The results of this study led us to conclude that in cancer cells constantly exposed to conditions of oxidative stress, the protective power of Hsp70 should be abolished by specific inhibitors of Hsp70 expression. PMID: 26713364
  15. GAPDH and protoporphyrinogen oxidase were shown to have higher expression in faster growing cell lines and primary tumors. Pharmacologic inhibition of GAPDH or PPOX reduced the growth of colon cancer cells in vitro PMID: 25944804
  16. The levels of GAPDH protein were significantly up-regulated in lung squamous cell carcinoma tissues and elevated GAPDH expression is associated with the proliferation and invasion of lung and esophageal squamous cell carcinomas. PMID: 25944651
  17. Genetic variants in GAPDH confer susceptibility to sporadic Parkinson's disease in a Chinese Han population. PMID: 26258539
  18. Data revealed that GAPDH is a phosphorylation substrate for AMPK and its interaction with Sirt1 in the nucleus. The phosphorylation and the nuclear translocation of GAPDH mediate rapid Sirt1 activation and autophagy initiation under glucose deprivation. PMID: 26626483
  19. findings demonstrate that dissociation of the GAPDH/Siah1 pro-apoptotic complex can block high glucose-induced pericyte apoptosis, widely considered a hallmark feature of diabetic retinopathy PMID: 26438826
  20. Extracellular GAPDH, or its N-terminal domain, inhibited gastric cancer cell growth. GAPDH bound to E-cadherin and downregulated the mTOR-p70S6 kinase pathway. PMID: 25785838
  21. suggests that GAPDH aggregates accelerate Abeta amyloidogenesis, subsequently leading to mitochondrial dysfunction and neuronal cell death in the pathogenesis of AD PMID: 26359500
  22. The level of GAPDH-AP DNA adduct formation depends on oxidation of the protein SH-groups; disulfide bond reduction in GAPDH leads to the loss of its ability to form the adducts with AP DNA PMID: 26203648
  23. The activity of GAPDS was significantly positively correlated with sperm motility and negatively with the incidence of infertility. PMID: 26255202
  24. The N terminus of nuclear GAPDH binds with PARP-1, and this complex promotes PARP-1 overactivation both in vitro and in vivo. PMID: 25882840
  25. deregulated GAPDH expression promotes NF-kappaB-dependent induction of HIF-1alpha and has a key role in lymphoma vascularization and aggressiveness PMID: 25394713
  26. analysis of how flux through GAPDH is a limiting step in aerobic glycolysis PMID: 25009227
  27. astrocytic production of D-serine is modulated by glycolytic activity via interactions between GAPDH and SRR. PMID: 25870284
  28. Dimer and tetramer interface residues in adenine-uridine rich elements are important for GAPDH-RNA binding. PMID: 25451934
  29. Siah1 is a substrate of ASK1 for activation of the GAPDH-Siah1 oxidative stress signaling cascade. PMID: 25391652
  30. GAPDH expression is deregulated during melanoma progression. PMID: 25550585
  31. Oxidation of an exposed methionine instigates the aggregation of glyceraldehyde-3-phosphate dehydrogenase. PMID: 25086035
  32. MZF-1 binds to and positively regulates the GAPDH promoter, indicating a role for GAPDH in calcitriol-mediated signaling. PMID: 25065746
  33. The protein encoded by this gene contains a peptide that displays antimicrobial activity against E. coli, P. aeruginosa, and C. albicans. PMID: 22832495
  34. GAPDH gene over expression in resected tumor samples is an adverse prognostic factor in non small cell lung cancer. PMID: 23988223
  35. This review describes the structure and localization of GAPDH in cells as well as the latest discoveries on the multifunctional properties of the enzyme. PMID: 24018444
  36. TG2-dependent GAPDH deamidation was suggested to participate in actin cytoskeletal remodeling. PMID: 24375405
  37. acetylation of GAPDH (K254) is reversibly regulated by the acetyltransferase PCAF and the deacetylase HDAC5. PMID: 24362262
  38. GAPDH binds to active Akt, leading to Bcl-xL increase and escape from caspase-independent cell death. PMID: 23645209
  39. GAPDH is a moonlighting protein that functions as a glycolytic enzyme as well as a uracil DNA glycosylase. PMID: 20727968
  40. Results indicate that CIB1 is uniquely positioned to regulate PI3K/AKT and MEK/ERK signaling and that simultaneous disruption of these pathways synergistically induces a nuclear GAPDH-dependent cell death. PMID: 22964641
  41. The data presented demonstrate that up-regulation of GAPDH positively associated genes is proportional to the malignant stage of various tumors and is associated with an unfavourable prognosis. PMID: 23620736
  42. In a yeast two-hybrid screen of a heart cDNA library with Mst1 as bait, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was identified as an Mst1-interacting protein. PMID: 23527007
  43. interaction between prolyl oligopeptidase and glyceraldehyde-3-phosphate dehydrogenase is required for cytosine arabinoside-induced glyceraldehyde-3-phosphate dehydrogenase nuclear translocation and cell death PMID: 23348613
  44. NleB, a bacterial glycosyltransferase, targets GAPDH function to inhibit NF-kappaB activation. PMID: 23332158
  45. GAPDH binds to alkylated, single-stranded, double-stranded and telomeric sequences in a drug-dependent and DNA sequence/structure-dependent manner. PMID: 23409959
  46. GAPDH negatively regulates HIV-1 infection and provide insights into a novel function of GAPDH in the HIV-1 life cycle and a new host defense mechanism against HIV-1 infection. PMID: 23237566
  47. The strength, selectivity, reversibility, and redox sensitivity of heme binding to GAPDH are consistent with it performing heme sensing or heme chaperone-like functions in cells. PMID: 22957700
  48. The ability of C1q to sense both human and bacterial GAPDHs sheds new insights on the role of this important defense collagen molecule in modulating the immune response. PMID: 23086952
  49. SIRT1 functions to retain GAPDH in the cytosol, protecting the enzyme from nuclear translocation via interaction with these two proteins. PMID: 22789853
  50. The present mini review summarizes recent findings relating to the extraglycolytic functions of GAPDH and highlights the significant role this enzyme plays in regulating both cell survival and apoptotic death--{REVIEW} PMID: 21895736

Show More

Hide All

Subcellular Location Cytoplasm, cytosol, Nucleus, Cytoplasm, perinuclear region, Membrane, Cytoplasm, cytoskeleton
Protein Families Glyceraldehyde-3-phosphate dehydrogenase family
Database Links

HGNC: 4141

OMIM: 138400

KEGG: hsa:2597

STRING: 9606.ENSP00000229239

UniGene: Hs.544577

Newsletters

Get all the latest information on Events, Sales and Offers. Sign up for newsletter today.

© 2007-2020 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1