Recombinant Mouse Granulocyte-macrophage colony-stimulating factor (Csf2) (Active)

In Stock
Code CSB-AP003651MO
Abbreviation Recombinant Mouse Csf2 protein (Active)
MSDS
Size $290
Order now
Image
  • (Tris-Glycine gel) Discontinuous SDS-PAGE (reduced) with 5% enrichment gel and 15% separation gel.
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Purity
Greater than 95% as determined by SDS-PAGE.
Endotoxin
Less than 1.0 EU/μg as determined by LAL method.
Activity
The ED50 as determined in a cell proliferation assay using PDC-P1 cells is 40-170 pg/ml.
Target Names
Uniprot No.
Research Area
Immunology
Alternative Names
Csf2; Csfgm; Granulocyte-macrophage colony-stimulating factor; GM-CSF; Colony-stimulating factor; CSF
Species
Mus musculus (Mouse)
Source
Mammalian cell
Expression Region
18-141aa
Complete Sequence
APTRSPITVTRPWKHVEAIKEALNLLDDMPVTLNEEVEVVSNEFSFKKLTCVQTRLKIFEQGLRGNFTKLKGALNMTASYYQTYCPPTPETDCETQVTTYADFIDSLKTFLTDIPFECKKPGQK
Mol. Weight
15.1 kDa
Protein Length
Full Length of Mature Protein
Tag Info
C-terminal 6xHis-tagged
Form
Lyophilized powder
Buffer
Lyophilized from a 0.2 μm filtered 1xPBS, pH 7.4.
Reconstitution
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting and FAQs
Storage Condition
Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time
Basically, we can dispatch the products out in 5-10 working days after receiving your orders. Delivery time may differ from different purchasing way or location, please kindly consult your local distributors for specific delivery time.
Notes
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet & COA
Please contact us to get it.
Description

Recombinant Mouse Granulocyte-macrophage colony-stimulating factor (Csf2) is produced in a mammalian cell expression system, which appears to ensure proper protein folding and post-translational modifications. The protein comprises the full length of the mature form, spanning amino acids 18 to 141, and is tagged with a C-terminal 6xHis-tag for ease of purification. With a purity greater than 95% as determined by SDS-PAGE, this product exhibits biological activity, evidenced by an ED50 of 40-170 pg/ml in a cell proliferation assay using PDC-P1 cells. Endotoxin levels are maintained below 1.0 EU/µg as determined by the LAL method.

Granulocyte-macrophage colony-stimulating factor (GM-CSF) represents a crucial cytokine involved in hematopoiesis. It's particularly important in the differentiation and proliferation of granulocyte and macrophage progenitor cells. GM-CSF also plays a significant role in immune responses and inflammation by modulating leukocyte functions. Given these properties, GM-CSF has become a protein of considerable interest in research exploring immune system regulation, inflammatory diseases, and potential therapeutic applications.

Potential Applications

Note: The applications listed below are based on what we know about this protein's biological functions, published research, and experience from experts in the field. However, we haven't fully tested all of these applications ourselves yet. We'd recommend running some preliminary tests first to make sure they work for your specific research goals.

1. Cell Proliferation and Viability Assays for Hematopoietic Research

This recombinant mouse GM-CSF can be used to stimulate proliferation of granulocyte and macrophage progenitor cells in controlled in vitro experiments. The established ED50 range of 40-170 pg/ml using PDC-P1 cells provides what appears to be a validated starting point for dose-response studies. Researchers might apply this protein to investigate hematopoietic cell differentiation pathways, optimize culture conditions for primary bone marrow cells, or study the molecular mechanisms underlying GM-CSF-mediated cell survival and proliferation.

2. Cytokine Receptor Binding and Signaling Studies

The biologically active recombinant protein may serve as an ideal tool for investigating GM-CSF receptor interactions and downstream signaling cascades. Scientists can perform receptor binding assays, competition studies, and signal transduction pathway analysis using this standardized protein preparation. The high purity (>95%) and low endotoxin levels should ensure reliable results in sensitive biochemical assays examining JAK-STAT pathway activation or other GM-CSF-induced cellular responses.

3. Antibody Development and Validation

The C-terminal 6xHis tag appears to simplify purification and immobilization of this GM-CSF protein for antibody screening and characterization applications. Researchers can use this protein as an antigen for developing mouse GM-CSF-specific antibodies or as a positive control in immunoassays. The mammalian expression system likely ensures proper protein folding and post-translational modifications, making it suitable for generating antibodies that recognize native GM-CSF conformations.

4. Comparative Species-Specific Cytokine Studies

This mouse-specific GM-CSF enables researchers to conduct comparative studies examining species differences in cytokine function and receptor specificity. The protein can be used alongside human or other species variants to investigate evolutionary conservation of GM-CSF signaling pathways. Such studies may be particularly valuable for validating mouse models in preclinical research and understanding species-specific responses to cytokine stimulation.

5. Protein-Protein Interaction and Pull-Down Assays

The 6xHis tag enables efficient capture of this GM-CSF protein using nickel-based affinity matrices for pull-down experiments. Researchers can investigate direct protein interactions between GM-CSF and its receptors or other binding partners using this tagged protein. The high purity and biological activity suggest that observed interactions should reflect genuine molecular associations rather than artifacts from protein aggregation or misfolding.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
Cytokine that stimulates the growth and differentiation of hematopoietic precursor cells from various lineages, including granulocytes, macrophages, eosinophils and erythrocytes.
Gene References into Functions
  1. Data show that the microbiota enhances respiratory defenses via granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling, which stimulates pathogen killing and clearance by alveolar macrophages PMID: 29142211
  2. The data indicate that GM-CSF drives chronic tissue damage and disability in experimental autoimmune encephalomyelitis via pleiotropic pathways, but it is dispensable during early lesion formation and the onset of neurologic deficits. PMID: 29288202
  3. the release of IL-33 and GM-CSF from epithelial cells induces the activation of p65 and the p38-MK2/3 signaling module in Dendritic Cells, resulting in Th2 polarization and, finally, allergic inflammation. PMID: 29288203
  4. results show T cell production of GM-CSF contributes to control of M. tuberculosis infection in the absence of other sources of GM-CSF, that multiple T cell subsets make GM-CSF in the lung over the course of infection and that GM-CSF can act directly on infected macrophages through a pathway requiring PPARgamma to limit bacterial growth PMID: 29066547
  5. In conclusion, our study confirms the pathogenic role of GM-CSF in colitis-associated colorectal cancer development. GM-CSF favors tumor-permissive microenvironment by inducing MDSC generation and recruiting them into colonic tissues. PMID: 28534709
  6. these data demonstrate that GM-CSF levels during radiotherapy can be used as a prognostic biomarker for lung and esophageal cancer PMID: 27835886
  7. this study demonstrates that epithelial-derived GM-CSF is a critical early signal during allergic sensitization to cockroach allergen PMID: 27731325
  8. These impaired macrophage functions in leukemic mice were significantly corrected by IL-3 and GM-CSF treatment indicating the therapeutic benefit of these two cytokines in leukemia. PMID: 28039843
  9. Both IL-6 protein production and transcript levels were downregulated by RA in respiratory tract epithelial cells (LETs) , but upregulated in macrophages (MACs). RA also increased transcript levels of MCP-1, GMCSF, and IL-10 in MACs, but not in LETs. Conversely, when LETs, but not MACs, were exposed to RA PMID: 27940088
  10. T-GM-CSF and -IL-3 significantly, and reciprocally, blunted receptor binding and myeloid progenitor cell proliferation activity of both FL-GM-CSF and -IL-3 in vitro and in vivo PMID: 28344320
  11. Results indicate GM-CSF as both a key contributor to the pathogenesis of MI and a potential therapeutic target. PMID: 28978634
  12. Obesity alters the lung neutrophil infiltration to enhance breast cancer metastasis through IL5 and GM-CSF. PMID: 28737771
  13. GM-CSF is required for the normal balance of leukocyte subsets, including granulocytes, B cells, and naive vs. effector T cells. There was an approximately 3-fold increase in the percentages of granulocytes in Csf2-/- PBMCs. The presence of maximal experimental autoimmune encephalomyelitis in the complete absence of GM-CSF revealed that GM-CSF is not an obligate effector molecule in all forms of EAE. PMID: 27256565
  14. chemerin inhibited nuclear factor-kappaB activation and the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-2 (IL-6) by tumor cells and tumor-associated endothelial cell, respectively, via its receptors, and consequently, MDSC induction was impaired, leading to restoration of antitumor T-cell response and decreased tumor angiogenesis. PMID: 28166197
  15. These findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation. PMID: 27595596
  16. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. PMID: 28459367
  17. Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. PMID: 25907616
  18. IL-23-induced GM-CSF mediates the pathogenicity of CD4(+) T cells in experimental autoimmune myocarditis. PMID: 26660726
  19. GM-CSF accelerated the G1/S phase transition in EPCs by upregulating the expression of cyclins D1 and E. PMID: 24662605
  20. host RNF13 affects the concentration of GM-CSF in tumor-bearing lungs PMID: 26197965
  21. Sc CW-derived BG stimulated the late and strong expression of Csf2 in a dectin-1-dependent manner, they remain poor inducers of chemokine and cytokine production in murine macrophages. PMID: 26840954
  22. GM-CSF and uPA are required for Porphyromonas gingivalis-induced alveolar bone loss in a mouse periodontitis model. PMID: 25753270
  23. These findings identify GM-CSF as central to the protective immune response that prevents progressive fungal disease PMID: 26755822
  24. regulatory molecule causative of aortic dissection and intramural haematoma PMID: 25923510
  25. Results indicate that granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling controls a pathogenic expression signature in CC chemokine receptors 2 (CCR2+)Ly6C(hi) monocytes. PMID: 26341401
  26. TL1A increases expression of CD25, LFA-1, CD134 and CD154, and induces IL-22 and GM-CSF production from effector CD4 T-cells PMID: 25148371
  27. Mafb-deficient microglia cultured with GM-CSF barely extended their membrane protrusions, probably due to abnormal activation of RhoA, a key regulator of cytoskeletal remodeling. MafB is a negative regulator of GM-CSF signaling in microglia. PMID: 25998393
  28. Csf2-/- mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2-/- mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. PMID: 25931125
  29. Renal ischemia reperfusion injury tubular cells expressed elevated GM-0CSF, that supports tubular cells proliferation. PMID: 25388222
  30. GM-CSF is key to the development of experimental osteoarthritis and its associated pain. PMID: 22995428
  31. Loss of encephalitogenic activity of STAT5-deficient autoreactive CD4+ T cells was independent of IFN-gamma or IL-17 production, but was due to the impaired expression of GM-CSF, a crucial mediator of T-cell pathogenicity. PMID: 25412660
  32. These data indicate that GM-CSF plays a role in the inflammatory signaling network that drives neutrophil recruitment in response to Clostridium difficile infection but does not appear to play a role in clearance of the infection. PMID: 25045999
  33. IRF8 represses GM-CSF expression in T cells to affect myeloid cell lineage differentiation. PMID: 25646302
  34. Reprogramming of monocytes by GM-CSF contributes to regulatory immune functions during intestinal inflammation. PMID: 25653427
  35. GM-CSF promotes advanced plaque progression by increasing macrophage apoptosis susceptibility. PMID: 25348165
  36. although iTreg cells maintained the ability to produce IFN-gamma and TNF-alpha in vivo, their ability to produce GM-CSF was selectively degraded upon antigen stimulation under inflammatory conditions. PMID: 25168419
  37. IFN-gamma has a pprotective role in the demyelination of brain through downregulation of IL-17/GM-CSF and induction of neuroprotective factors in the brain by monocytes/microglial cells. PMID: 25339670
  38. Expression of PPAR-gamma in fetal lung monocytes was dependent on the cytokine GM-CSF. Therefore, GM-CSF has a lung-specific role in the perinatal development of alveolar macrophages through the induction of PPAR-gamma in fetal monocytes. PMID: 25263125
  39. These novel findings indicate that the inflammatory mediator, GM-CSF, may have significant protective properties in the chronic sequelae of experimental Traumatic brain injury PMID: 24392832
  40. Airway infections and pollutants increase the susceptibility to develop allergic asthma through a GM-CSF/IL-33/OX40L pathway. PMID: 24551140
  41. Data indicate that neutralization of GM-CSF would be a useful therapeutic strategy for severe connective tissue diseases (CTD)-interstitial lung disease (ILD). PMID: 24951817
  42. Data indicate that lung epithelium-derived GM-CSF is a critical regulator of CD11b+ dendritic cells (DCs)-mediated Th2 cell priming. PMID: 24943219
  43. Bhlhe40 is required positively regulates the production of GM-CSF and negatively regulates the production of IL-10 in T cells. PMID: 24699451
  44. Report IL-18 plus GM-CSF modified tumor cell vaccine can induce significant antitumor effects in Lewis lung carcinoma. PMID: 24475975
  45. Data indicate that in type 1 diabetes monocytes STAT5Ptyr activation is significantly higher and is found bound to CSF2 promoter and PTGS2 enhancer regions. PMID: 24204704
  46. Data indicate that GM-CSF controls IgM production in innate response activator B cells. PMID: 24821911
  47. our findings suggest that over-production of GM-CSF by T cells could be a pathogenic factor in many histiocytic disorders PMID: 24183847
  48. that p52 binds to the promoter of the GM-CSF-encoding gene (Csf2) and cooperates with c-Rel in the transactivation of this target gene. PMID: 24899500
  49. GM-SCF, IL-21 and Rae1 expression, alone or in combination, induces a cellular immune response against H22 tumor cells. PMID: 24350772
  50. Data indicate that GM-CSF knockout mice exhibit a unique mix of M1-M2 macrophage phenotypes inalveolar macrophages. PMID: 24044676

Show More

Hide All

Subcellular Location
Secreted.
Protein Families
GM-CSF family
Database Links
icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2025 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
Place an order now

I. Product details

*
*
*
*

II. Contact details

*
*

III. Ship To

*
*
*
*
*
*
*

IV. Bill To

*
*
*
*
*
*
*
*