Recombinant Human Oncostatin-M protein (OSM), partial (Active)

In Stock
Code CSB-AP002241HU
Abbreviation Recombinant Human OSM protein, partial (Active)
MSDS
Size $354
Order now
Image
Have Questions? Leave a Message or Start an on-line Chat

Product Details

Purity
>97% as determined by SDS-PAGE.
Endotoxin
Less than 1.0 EU/μg as determined by LAL method.
Activity
Fully biologically active when compared to standard. The ED50 as determined by a cell proliferation assay using human TF-1 cells is less than 2 ng/ml, corresponding to a specific activity of >5.0x105 IU/mg.
Target Names
Uniprot No.
Research Area
Immunology
Alternative Names
MGC20461; ONCM_HUMAN; Oncostatin M; Oncostatin-M; OSM
Species
Homo sapiens (Human)
Source
E.coli
Expression Region
26-234aa
Complete Sequence
AAIGSCSKEY RVLLGQLQKQ TDLMQDTSRL LDPYIRIQGL DVPKLREHCR ERPGAFPSEE TLRGLGRRGF LQTLNATLGC VLHRLADLEQ RLPKAQDLER SGLNIEDLEK LQMARPNILG LRNNIYCMAQ LLDNSDTAEP TKAGRGASQP PTPTPASDAF QRKLEGCRFL HGYHRFMHSV GRVFSKWGES PNRSRRHSPH QALRKGVRR
Mol. Weight
23.7 kDa
Protein Length
Partial
Tag Info
Tag-Free
Form
Lyophilized powder
Buffer
Lyophilized from a 0.2 μm filtered PBS, pH 7.4
Reconstitution
We recommend that this vial be briefly centrifuged prior to opening to bring the contents to the bottom. Please reconstitute protein in deionized sterile water to a concentration of 0.1-1.0 mg/mL.We recommend to add 5-50% of glycerol (final concentration) and aliquot for long-term storage at -20°C/-80°C. Our default final concentration of glycerol is 50%. Customers could use it as reference.
Troubleshooting and FAQs
Storage Condition
Store at -20°C/-80°C upon receipt, aliquoting is necessary for mutiple use. Avoid repeated freeze-thaw cycles.
Shelf Life
The shelf life is related to many factors, storage state, buffer ingredients, storage temperature and the stability of the protein itself.
Generally, the shelf life of liquid form is 6 months at -20°C/-80°C. The shelf life of lyophilized form is 12 months at -20°C/-80°C.
Lead Time
5-10 business days
Notes
Repeated freezing and thawing is not recommended. Store working aliquots at 4°C for up to one week.
Datasheet & COA
Please contact us to get it.
Description

Recombinant Human Oncostatin-M protein (OSM) is produced in E. coli and spans the 26-234 amino acid region, providing a partial, tag-free protein. This product achieves a purity level of over 97%, confirmed by SDS-PAGE analysis. It appears to be fully biologically active, with an ED50 of less than 2 ng/ml determined via a human TF-1 cell proliferation assay, indicating a specific activity of greater than 5.0 × 10^5 IU/mg. Endotoxin levels are maintained below 1.0 EU/µg as per LAL testing.

Oncostatin-M is a cytokine that belongs to the interleukin-6 family. It plays what appears to be a significant role in cell growth regulation, differentiation, and inflammation. This protein gets involved in various signaling pathways and has implications in research focusing on cell proliferation and immune responses. Researchers often turn to this protein as a tool for exploring cellular processes and understanding its influence across different biological contexts.

Potential Applications

Note: The applications listed below are based on what we know about this protein's biological functions, published research, and experience from experts in the field. However, we haven't fully tested all of these applications ourselves yet. We'd recommend running some preliminary tests first to make sure they work for your specific research goals.

1. Cell Proliferation and Viability Assays

This recombinant OSM protein can be used to study cytokine-induced cell proliferation in various human cell lines. Hematopoietic cells like TF-1 cells work particularly well, as demonstrated in the activity testing. The high specific activity (>5.0 × 10⁵ IU/mg) and low ED50 (<2 ng/ml) make it suitable for dose-response studies examining OSM's effects on cell growth and survival.

Researchers can investigate OSM signaling pathways that may be involved in cell cycle regulation and proliferation mechanisms. The high purity (>97%) and low endotoxin levels should ensure reliable results without confounding inflammatory responses.

2. JAK-STAT Signaling Pathway Studies

OSM is known to activate JAK-STAT signaling cascades. This makes the biologically active recombinant protein valuable for investigating these pathways in vitro. Researchers can use this protein to study STAT phosphorylation patterns, nuclear translocation, and downstream gene expression changes in response to OSM stimulation.

The tag-free nature of the protein appears to eliminate potential interference with receptor binding and signal transduction. Time-course experiments can be designed to map the kinetics of JAK-STAT activation using this highly pure protein preparation.

3. Cytokine Receptor Binding and Competition Studies

The biologically active OSM protein works well in receptor binding assays to characterize OSM receptor interactions and binding kinetics. Competition binding experiments can be performed to evaluate the relative affinities of OSM variants or to screen potential receptor antagonists.

The high purity and consistent biological activity make it suitable as a reference standard in comparative binding studies. Researchers can also use this protein to investigate receptor specificity and cross-reactivity with related cytokine family members, though results may vary depending on experimental conditions.

4. Inflammatory Response Research Models

This recombinant OSM can serve as a controlled stimulus in in vitro models studying inflammatory responses and cytokine networks. The low endotoxin content (<1.0 EU/μg) helps ensure that observed effects are specifically due to OSM activity rather than bacterial contamination artifacts.

Researchers can examine OSM's role in inflammatory cascades, including its effects on other cytokine production and inflammatory mediator release. The consistent biological activity allows for reproducible experimental conditions across multiple studies investigating inflammatory mechanisms, though some variability between cell types is likely.

5. Antibody Development and Validation

The high-purity, tag-free recombinant OSM protein serves as an excellent antigen for developing and characterizing anti-OSM antibodies for research applications. The biological activity can be used to validate whether developed antibodies retain or block OSM function through neutralization assays.

ELISA-based assays can be established using this protein as a standard for quantifying OSM levels in experimental samples. The consistent quality and activity make it suitable for antibody specificity testing and cross-reactivity studies with related cytokines, though careful optimization may be needed for optimal results.

Customer Reviews and Q&A

 Customer Reviews

There are currently no reviews for this product.

Submit a Review here

Target Background

Function
Growth regulator. Inhibits the proliferation of a number of tumor cell lines. Stimulates proliferation of AIDS-KS cells. It regulates cytokine production, including IL-6, G-CSF and GM-CSF from endothelial cells. Uses both type I OSM receptor (heterodimers composed of LIFR and IL6ST) and type II OSM receptor (heterodimers composed of OSMR and IL6ST). Involved in the maturation of fetal hepatocytes, thereby promoting liver development and regeneration.
Gene References into Functions
  1. The mechanism of prostaglandin E2-induced transcriptional up-regulation of Oncostatin-M by CREB and Sp1 has been described. PMID: 29269396
  2. OSM [oncostatin M]might be involved in the invasiveness of extravillous trophoblasts under hypoxia conditions via increasing MMP-2 and MMP-9 enzymatic activities through STAT3 signaling. Increased MMP-9 activity by OSM seems to be more important in primary trophoblasts. PMID: 30091322
  3. IL6 family cytokine oncostatin-M (OSM) induced a switch to the EMT phenotype and protected cells from targeted drug-induced apoptosis in OSM receptors (OSMRs)/JAK1/STAT3-dependent manner PMID: 28729401
  4. Oncostatin M induces RIG-I and MDA5 expression and enhances the double-stranded RNA response in fibroblasts. PMID: 28560754
  5. The IL-6-type cytokine oncostatin M (OSM) indeed induces cellular properties associated with tumorigenesis and disease progression in non-transformed human prostate epithelial cells, including morphological changes, epithelial-to-mesenchymal transition (EMT), enhanced migration and pro-invasive growth patterns. PMID: 29526757
  6. downregulation of miR-20a-5p is caused by promoter hypermethylation. MiR-20a-5p could also suppress the production of IL-17 by targeting OSM and CCL1 production in CD4(+) T cells in patients with active VKH. PMID: 28972028
  7. our findings suggested that OSM suppresses SLUG expression and tumor metastasis of lung adenocarcinoma cells through inducing the inhibitory effect of the STAT1-dependent pathway and suppressing the activating effect of STAT3-dependent signaling PMID: 27486982
  8. Genistein (a specific Tyr phosphorylation inhibitor) leads to the interaction of CHOP (C/EBP Homologous Protein) with C/EBP-beta, thus negatively regulating it. Knockdown of C/EBP-beta also leads to inhibition of PMA-mediated OSM induction. PMID: 27676154
  9. Data provide evidence that OSM regulates an epithelial-mesenchymal transition and cancer stem cell plasticity program that promotes tumorigenic properties in pancreatic cells. PMID: 28053127
  10. OSM-induced plasticity was Signal Transducer and Activator of Transcription 3 (STAT3)-dependent, and also required a novel intersection with transforming growth factor-beta (TGF-beta)/SMAD signaling. Removal of OSM or inhibition of STAT3 or SMAD3 resulted in a marked reversion to a non-invasive, epithelial phenotype. PMID: 28288136
  11. Neutrophils are a major source of OSM-producing cells in patients with chronic rhinosinusitis and severe asthma. PMID: 27993536
  12. OSM and OSMR are highly expressed in inflammatory bowel disease intestinal mucosa compared to control mucosa. OSM promotes inflammatory behavior in human intestinal stroma. PMID: 28368383
  13. Study showed that in atrial fibrillation (AF) with thrombus, the atrial tissue infiltration of M1 macrophages increased significantly; the OSM expression was also found to increase simultaneously; downstream tissue factor (TF) increased and tissue factor pathway inhibitors (TFPI)decreased, leading to an imbalance between TF and TFPI eventually. OSM might be related to thrombosis in patients with AF mediated by TF and TFPI PMID: 28471981
  14. a novel STAT3/SMAD3-signaling axis is required for OSM-mediated senescence. PMID: 27892764
  15. This result demonstrates that HPV16 oncoproteins upregulate oncostatin M and play an important role to promote oral squamous cell carcinoma development PMID: 27349249
  16. The identification of the OSM inflammatory pathway as an important mediator of epithelial mesenchymal transition in triple-negative breast cancer (TNBC) may provide a novel potential opportunity to improve therapeutic strategies. PMID: 28106823
  17. Oncostatin M and interleukin-31: Cytokines, receptors, signal transduction and physiology. PMID: 26198770
  18. Oncostatin M can regulate airway smooth muscle responses alone or in synergy with IL-17A. PMID: 25849622
  19. we demonstrated that recombinant human OSM (rhOSM) promoted tumor angiogenesis in EC cell lines by activating STAT3 (signal transducer and activator of transcription 3) and enhanced both cell migration and cell inva PMID: 25954856
  20. OSM expression in osteoblasts increases in response to Osteopontin-induced inflammation in vitro. PMID: 26304992
  21. Data suggest that OSM promotes osteoblastic differentiation of vascular smooth muscle cells through JAK3/STAT3 pathway and may contribute to the development of atherosclerotic calcification. PMID: 25735629
  22. administration of Fstl1 induced airway remodeling and increased OSM, whereas administration of an anti-OSM Ab blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation PMID: 26355153
  23. OSM promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. PMID: 25840724
  24. Oncostatin M regulates neuronal function and confers neuroprotectin in an animal model of ischemic stroke. PMID: 26311783
  25. In patients with diabetes, bone marrow plasma OSM levels were higher and correlated with the bone marrow to peripheral blood stem cell ratio. PMID: 25804939
  26. OSM promotes STAT3-dependent intestinal epithelial cell proliferation and wound healing in vitro. PMID: 24710357
  27. Autocrine activation of STAT3 in MCF-7 cells ectopically expressing OSM-induced cellular scattering. PMID: 25252914
  28. oncostatin M is a cytokine possessing vigorous antiviral and immunostimulatory properties which is released by APC upon interaction with CD40L present on activated CD4+ T cells. PMID: 24418171
  29. Data indicate that pro-inflammatory cytokines such as IL6 or OSM could activate pathways associated with prostate cancer progression and synergize with cell-autonomous oncogenic events to promote aggressive malignancy. PMID: 23867565
  30. OSM may promote a clinically relevant EMT/CSC-like phenotype in human breast cancer via a PI3K-dependent mechanism PMID: 23584474
  31. white adipose tissue macrophages are a source of OSM and OSM levels are significantly induced in obesity/type 2 diabetes. OSM produced from immune cells in WAT may act in a paracrine manner on adipocytes to promote inflammation in adipose tissue. PMID: 24297795
  32. data suggest that increased serum OSM levels are associated with the coronary stenosis score and that circulating levels of this chemokine may reflect the extent of coronary atherosclerosis PMID: 24600984
  33. TGFBI and periostin, extracellular matrix proteins implicated in tumorigenesis and metastasis, were identified as oncostatin M-induced secreted proteins in mesenchymal stem cells. PMID: 23735324
  34. Oncostatin M is a FIP1L1/PDGFRA-dependent mediator of cytokine production in chronic eosinophilic leukemia. PMID: 23621172
  35. These data show that OSM and IL-1beta are not only a biological characteristic signature of hypertensive leg ulcer, but these cytokines reflect a specific inflammatory state, directly involved in the pathogenesis. PMID: 23313749
  36. OSM induced proliferation of Ewing sarcoma cell lines. PMID: 22982441
  37. Data suggest that OSM enhances invasion activities of extravillous trophoblasts during placentation through increased enzyme activity of MMP-2 (primarily) and MMP-9 (to some extent). PMID: 22931588
  38. A unique loop structure in oncostatin M determines binding affinity toward oncostatin M receptor and leukemia inhibitory factor receptor. PMID: 22829597
  39. Oncostatin M signaling may cause suppression of estrogen receptor-alpha and disease progression i breast cancer. PMID: 22267707
  40. Oncostatin M (OSM), a cytokine of the IL-6 family, was identified as a major coupling factor produced by activated circulating CD14+ or bone marrow CD11b+ monocytes/macrophages. PMID: 22267310
  41. Oncostatin M (OSM) is a major mediator of cardiomyocyte dedifferentiation and remodeling during acute myocardial infarction (MI) and in chronic dilated cardiomyopathy (DCM). PMID: 22056139
  42. JAK2 V617F-mediated up-regulation of OSM may contribute to fibrosis, neoangiogenesis, and the cytokine storm observed in myeloproliferative neoplasms. PMID: 22051730
  43. c-MYC is an important molecular switch that alters the cellular response to OSM-mediated signaling from tumor suppressive to tumor promoting. PMID: 21975934
  44. A possible interaction between IL-6, OSM, u-PA and VEGF in prostate cancer was investigated. PMID: 21965736
  45. This report uses an in vitro model with human umbilical vein endothelial cells and isolated human neutrophils to examine the effects of two locally derived cytokines, granulocyte-macrophage colony-stimulating factor and G-CSF, on oncostatin M expression. PMID: 21775705
  46. OSM is expressed in atherosclerotic lesions and may contribute to the progression of atherosclerosis by promoting SMC proliferation, migration and extracellular matrix protein synthesis through the STAT pathway PMID: 21376322
  47. Taken together, our data show that KIT D816V promotes expression of OSM through activation of STAT5. PMID: 21457934
  48. The purpose of this study was to investigate the possible suppressive or stimulatory role of OSM in the ovarian cancer model of SKOV3 cells, as well as the involvement of the ERK1/2, p38 and STAT3 signaling pathways. PMID: 21399864
  49. promotes STAT3 activation, VEGF production, and invasion in osteosarcoma cell lines PMID: 21481226
  50. a cytokine-triggered regulatory network for PCSK9 expression that is linked to JAKs and the ERK signaling pathway PMID: 21196532

Show More

Hide All

Subcellular Location
Secreted.
Protein Families
LIF/OSM family
Database Links

HGNC: 8506

OMIM: 165095

KEGG: hsa:5008

STRING: 9606.ENSP00000215781

UniGene: Hs.248156

CUSABIO guaranteed quality
icon of phone
Call us
301-363-4651 (Available 9 a.m. to 5 p.m. CST from Monday to Friday)
icon of address
Address
7505 Fannin St., Ste 610, Room 7 (CUBIO Innovation Center), Houston, TX 77054, USA
icon of social media
Join us with

Subscribe newsletter

Leave a message

* To protect against spam, please pass the CAPTCHA test below.
CAPTCHA verification
© 2007-2025 CUSABIO TECHNOLOGY LLC All rights reserved. 鄂ICP备15011166号-1
Place an order now

I. Product details

*
*
*
*

II. Contact details

*
*

III. Ship To

*
*
*
*
*
*
*

IV. Bill To

*
*
*
*
*
*
*
*