Code | CSB-RA008968A2448phHU |
Size | US$350 |
Image |
|
Have Questions? | Leave a Message or Start an on-line Chat |
Uniprot No. | P42345 | ||||||||
Target Names | MTOR | ||||||||
Alternative Names |
dJ576K7.1 (FK506 binding protein 12 rapamycin associated protein 1) antibody; FK506 binding protein 12 rapamycin associated protein 1 antibody; FK506 binding protein 12 rapamycin associated protein 2 antibody; FK506 binding protein 12 rapamycin complex associated protein 1 antibody; FK506-binding protein 12-rapamycin complex-associated protein 1 antibody; FKBP rapamycin associated protein antibody; FKBP12 rapamycin complex associated protein antibody; FKBP12-rapamycin complex-associated protein 1 antibody; FKBP12-rapamycin complex-associated protein antibody; FLJ44809 antibody; FRAP antibody; FRAP1 antibody; FRAP2 antibody; Mammalian target of rapamycin antibody; Mechanistic target of rapamycin antibody; mTOR antibody; MTOR_HUMAN antibody; OTTHUMP00000001983 antibody; RAFT1 antibody; Rapamycin and FKBP12 target 1 antibody; Rapamycin associated protein FRAP2 antibody; Rapamycin target protein 1 antibody; Rapamycin target protein antibody; RAPT1 antibody; Serine/threonine-protein kinase mTOR antibody
|
||||||||
Species Reactivity | Human | ||||||||
Immunogen | A synthesized peptide derived from Human Phospho-MTOR (S2448) | ||||||||
Immunogen Species | Homo sapiens (Human) | ||||||||
Conjugate | Non-conjugated | ||||||||
Clonality | Monoclonal | ||||||||
Isotype | Rabbit IgG | ||||||||
Clone No. | 1G6 | ||||||||
Purification Method | Affinity-chromatography | ||||||||
Concentration | It differs from different batches. Please contact us to confirm it. | ||||||||
Buffer | Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. | ||||||||
Form | Liquid | ||||||||
Tested Applications | ELISA, WB, IHC, IF | ||||||||
Recommended Dilution |
|
||||||||
Protocols | ELISA Protocol Western Blotting(WB) Protocol Immunohistochemistry (IHC) Protocol Immunofluorescence (IF) Protocol |
||||||||
Troubleshooting and FAQs | Antibody FAQs | ||||||||
Storage | Upon receipt, store at -20°C or -80°C. Avoid repeated freeze. | ||||||||
Lead Time | Basically, we can dispatch the products out in 1-3 working days after receiving your orders. Delivery time maybe differs from different purchasing way or location, please kindly consult your local distributors for specific delivery time. |
There are currently no reviews for this product.
Function |
Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. This also includes mTORC1 signaling cascade controlling the MiT/TFE factors TFEB and TFE3: in the presence of nutrients, mediates phosphorylation of TFEB and TFE3, promoting their cytosolic retention and inactivation. Upon starvation or lysosomal stress, inhibition of mTORC1 induces dephosphorylation and nuclear translocation of TFEB and TFE3, promoting their transcription factor activity. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. Also prevents autophagy by phosphorylating RUBCNL/Pacer under nutrient-rich conditions. Prevents autophagy by mediating phosphorylation of AMBRA1, thereby inhibiting AMBRA1 ability to mediate ubiquitination of ULK1 and interaction between AMBRA1 and PPP2CA. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422'. Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms. Plays an important regulatory role in the circadian clock function; regulates period length and rhythm amplitude of the suprachiasmatic nucleus (SCN) and liver clocks. Phosphorylates SQSTM1, promoting interaction between SQSTM1 and KEAP1 and subsequent inactivation of the BCR(KEAP1) complex.
|
Gene References into Functions |
|
Involvement in disease | Smith-Kingsmore syndrome (SKS); Focal cortical dysplasia 2 (FCORD2) |
Subcellular Location | Endoplasmic reticulum membrane; Peripheral membrane protein; Cytoplasmic side. Golgi apparatus membrane; Peripheral membrane protein; Cytoplasmic side. Mitochondrion outer membrane; Peripheral membrane protein; Cytoplasmic side. Lysosome. Cytoplasm. Nucleus, PML body. Microsome membrane. Lysosome membrane. Cytoplasmic vesicle, phagosome. |
Protein Families | PI3/PI4-kinase family |
Tissue Specificity | Expressed in numerous tissues, with highest levels in testis. |
Database Links |
HGNC: 3942 OMIM: 601231 KEGG: hsa:2475 STRING: 9606.ENSP00000354558 UniGene: Hs.338207 |